
Blog Entry 02 20 2022 by James Pate Williams Jr

I got very dissatisfied with my efforts to port H. T. Lau’s excellent NUMAL C code to Python. I think the

reason was that I had mixed endian code, one part based on little endian and the other big endian. I

used my C# unsigned large integer code to create a Microsoft Visual Studio 2019 Community C++

dynamic link library. It has been over two decades since I created C/C++ DLLs. I wrote several C# DLLs

back in 2015. My new C++ DLL has a sieve of Eratosthenes capable of giving a user access to 664,579

primes which is the number of small prime numbers less than 10,000,000. I use an unsigned long long

(ull) data type to create a 64-bit based sieve. Here is some information based on my multiple threading

C++ standalone sieve applications. I personally developed the bit manipulation C code in around 1996 or

1997. The source code was then used for the initial permutation found in my DES (Data Encryption

Standard) implementations (C, C++, C#, and Java). I have used two elementary number theory algorithms

to test my DLL: the Miller-Rabin probabilistic primality test and the simple trial division factorization

method. My plans for the next period are to port more number theoretical code to the DLL.

n Sieve 1 (s) Sieve 2 (s)
1000000 0.073 0.063
1000000 0.075 0.061
1000000 0.073 0.061
1000000 0.073 0.062
1000000 0.074 0.063
1000000 0.071 0.063
1000000 0.072 0.063
1000000 0.073 0.065
1000000 0.075 0.063
1000000 0.074 0.063

average 0.073 0.063

n Sieve 1 (s) Sieve 2 (s)

of

primes

1000000 0.074 0.064 78498

2000000 0.195 0.147 148933

3000000 0.32 0.236 216816

4000000 0.46 0.332 283146

5000000 0.593 0.443 348513

6000000 0.759 0.569 412849

7000000 0.919 0.692 476648

8000000 1.088 0.836 539777

9000000 1.267 0.994 602489

Sieve 1 Sieve of Eratosthenes
Sieve 2 Sieve of Atkin

