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/*
Author:  Pate Williams (c) 1997 ­ 2022
*/

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include "Factoring .h"
#include "Number_Theory.h"

long prime1[PRIME_SIZE_1], sieve1[SIEVE_SIZE_1];
long prime2[PRIME_SIZE_2], sieve2[SIEVE_SIZE_2];
long differ[PRIME_SIZE_2 ­ PRIME_SIZE_1 + 2];

int main(void) {
char nStr[128], option[128];
int d = 0, bm, mr, numdiff = PRIME_SIZE_2 ­ PRIME_SIZE_1 + 1;
double sieve_time;
long count, i, kount, p = 2;
long long largest_prime, N, sqrtN;
struct factor f[32], g[32];
clock_t begin, end;

begin = clock();
Greek_sieve(

MAX_SIEVE_1,
PRIME_SIZE_1,
sieve1,
prime1);

Greek_sieve(
MAX_SIEVE_2,
PRIME_SIZE_2,
sieve2,
prime2);

end = clock();
sieve_time = (double)(end ­ begin) / CLOCKS_PER_SEC;
printf("Time to create prime number ");
printf("sieves in seconds %lf\n", sieve_time);
while (1) {

printf("Menu\n");
printf("1 Brent's Algorithm\n");
printf("2 p ­ 1 Two Stages\n");
printf("3 Trial Division\n");
printf("4 Test get_bits\n");
printf("5 Test pow_mod_M and pow_mod_S\n");
printf("6 Exit\n");
printf("Option = ");
scanf_s("%s", option, 128);
if (option[0] < '1' || option[0] > '6') {

printf("Illegal option, try again\n");
continue;
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}
if (option[0] == '6')

break;
printf("N = ");
scanf_s("%s", nStr, 128);
N = atoll(nStr);
if (N <= 3) {

printf("Number is too small\n");
continue;

}
if (N <= 1234567890) {

mr = Miller_Rabin(N, 20);
if (N <= 0) break;
if (mr == 1) {

printf("Number is probably prime\n");
continue;

}
}
if (N == 1) {

break;
}
begin = clock();
if (option[0] == '1') {

bm = do_Brent_Method(&N, f, &count);
if (bm == ­1) {

printf("Brent's method failed\n");
continue;

}
QuickSort(f, count);
printf("Factors:\n");
for (i = 0; i < count; i++) {

printf("%lld", f[i].prime);
if (f[i].expon > 1)

printf(" ^ %ld\n", f[i].expon);
else

printf("\n");
}
mr = Miller_Rabin(f[count ­ 1].prime, 20);
if (f[count ­ 1].prime <= 1234567890 && mr == 1)

printf("Last factor is probably prime\n");
else if (f[count ­ 1].prime <= 1234567890 && mr == 0)

printf("Last factor is composite\n");
}
else if (option[0] == '2') {

int failure = 0;
count = 0;
while (failure == 0) {

long long d = second_stage(
&N, MAX_SIEVE_1, MAX_SIEVE_2,
&failure,
numdiff, differ,
PRIME_SIZE_1, prime1,
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PRIME_SIZE_2, prime2);
if (d > 1) {

int expon = 0;
while (N % d == 0) {

expon++;
N /= d;

}
f[count].expon = expon;
f[count].prime = d;
count++;

}
else if (d == ­1) {

printf("p ­ 1 Method failed\n");
break;

}
}
QuickSort(f, count);
for (i = 0; i < count; i++) {

printf("%lld", f[i].prime);
if (f[i].expon > 1)

printf(" ^ %ld\n", f[i].expon);
else

printf("\n");
}
mr = Miller_Rabin(f[count ­ 1].prime, 20);
if (f[count ­ 1].prime <= 1234567890 && mr == 1)

printf("Last factor is probably prime\n");
else if (f[count ­ 1].prime <= 1234567890 && mr == 0)

printf("Last factor is composite\n");
}
else if (option[0] == '3') {

largest_prime = prime1[PRIME_SIZE_1 ­ 1];
printf("Largest prime = %lld\n", largest_prime);
sqrtN = (long long)sqrt((double)N);
if (sqrtN > largest_prime) {

printf("Number is too large!\n");
printf("Square root %lld must be < %lld\n", sqrtN, 
largest_prime);

continue;
}
trial_division(&N, g, &kount,

PRIME_SIZE_1, prime1);
printf("Factors:\n");
for (i = 0; i < kount; i++) {

printf("%lld", g[i].prime);
if (g[i].expon > 1)

printf(" ^ %ld\n", g[i].expon);
else

printf("\n");
}
QuickSort(g, kount);
mr = Miller_Rabin(g[kount ­ 1].prime, 20);
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if (g[kount ­ 1].prime <= 1234567890 && mr == 1)
printf("Last factor is probably prime\n");

else if (g[kount ­ 1].prime <= 1234567890 && mr == 0)
printf("Last factor is composite\n");

}
if (option[0] >= '1' && option[0] <= '3') {

end = clock();
sieve_time = (double)(end ­ begin) / CLOCKS_PER_SEC;
printf("Time to do factoring in seconds = %lf\n", sieve_time);

}
if (option[0] == '4') {

int l, length, bits[64];
get_bits(N, &length, bits);
for (l = 0; l < length; l++)

printf("%d", bits[l]);
printf("\n");

}
else if (option[0] == '5') {

long long radix, power;
printf("Enter radix = ");
scanf_s("%s", nStr, 128);
radix = atoll(nStr);
printf("Enter power = ");
scanf_s("%s", nStr, 128);
power = atoll(nStr);
printf("pow_mod_M = %lld\n", pow_mod_M(

radix, power, N));
printf("pow_mod_S = %lld\n", pow_mod_S(

radix, power, N));
}

}
return 0;

}


