...udio 2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Main.c

/*
Author: Pate Williams (c) 1997 - 2022
*/

#include <math.h>

#include <stdio.h>
#include <string.h>
#include <time.h>

#include "Factoring .h"
#include "Number_Theory.h"

OCooNOOTUVTE, WNER

[ERNY
R o

12 long primel[PRIME_SIZE_1], sievel[SIEVE_SIZE 1];
13 long prime2[PRIME_SIZE_ 2], sieve2[SIEVE_SIZE 2];
14 long differ[PRIME_SIZE 2 - PRIME_SIZE 1 + 2];

15

16 int main(void) {

17 char nStr[128], option[128];

18 int d = @, bm, mr, numdiff = PRIME_SIZE 2 - PRIME_SIZE 1 + 1;
19 double sieve_time;

20 long count, i, kount, p = 2;

21 long long largest_prime, N, sqrtN;

22 struct factor f[32], g[32];

23 clock_t begin, end;

24

25 begin = clock();

26 Greek_sieve(

27 MAX_SIEVE 1,

28 PRIME_SIZE 1,

29 sievel,

30 primel);

31 Greek_sieve(

32 MAX_SIEVE_ 2,

33 PRIME_SIZE 2,

34 sieve2,

35 prime2);

36 end = clock();

37 sieve_time = (double)(end - begin) / CLOCKS_PER_SEC;
38 printf("Time to create prime number ");

39 printf("sieves in seconds %1f\n", sieve_time);
40 while (1) {

41 printf("Menu\n");

42 printf("1 Brent's Algorithm\n");

43 printf("2 p - 1 Two Stages\n");

44 printf("3 Trial Division\n");

45 printf("4 Test get_bits\n");

46 printf("5 Test pow_mod_M and pow_mod_S\n");
47 printf("6 Exit\n");

48 printf("Option = ");

49 scanf_s("%s", option, 128);

50 if (option[@] < '1' || option[@] > '6"') {
51 printf("Illegal option, try again\n");

52 continue;

...udio 2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Main.c

53 }

54 if (option[@] == '6")

55 break;

56 printf("N = ");

57 scanf_s("%s", nStr, 128);

58 N = atoll(nStr);

59 if (N <= 3) {

60 printf("Number is too small\n");

61 continue;

62 }

63 if (N <= 1234567890) {

64 mr = Miller_Rabin(N, 20);

65 if (N <= @) break;

66 if (mr == 1) {

67 printf(“Number is probably prime\n");
68 continue;

69 }

70 }

71 if (N ==1) {

72 break;

73 }

74 begin = clock();

75 if (option[@] == '1") {

76 bm = do_Brent_Method(&N, f, &count);

77 if (bm == -1) {

78 printf("Brent's method failed\n");

79 continue;

80 }

81 QuickSort(f, count);

82 printf("Factors:\n");

83 for (1 = 0; i < count; i++) {

84 printf("%11d", f[i].prime);

85 if (f[i].expon > 1)

86 printf(" ~ %1d\n", f[i].expon);
87 else

88 printf("\n");

89 }

90 mr = Miller_ Rabin(f[count - 1].prime, 20);
91 if (f[count - 1].prime <= 1234567890 && mr == 1)
92 printf("Last factor is probably prime\n");
93 else if (f[count - 1].prime <= 1234567890 && mr == @)
94 printf(“Last factor is composite\n");
95 }

96 else if (option[@] == '2") {

97 int failure = 0;

98 count = 0;

99 while (failure == @) {

100 long long d = second_stage(

101 &N, MAX_SIEVE_1, MAX_SIEVE_ 2,
102 &failure,

103 numdiff, differ,

104 PRIME_SIZE_ 1, primel,

...udio 2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Main.c

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155

PRIME_SIZE 2, prime2);
if (d > 1) {
int expon = 0;
while (N % d == 09) {
expon++;
N /= d;
}
f[count].expon
f[count].prime
count++;

expon;
d;

}

else if (d == -1) {
printf("p - 1 Method failed\n");
break;

}

}
QuickSort(f, count);

for (1 = 0; i < count; i++) {
printf("%11d", f[i].prime);
if (f[i].expon > 1)
printf(" ~ %1d\n", f[i].expon);
else
printf("\n");
}
mr = Miller_ Rabin(f[count - 1].prime, 20);
if (f[count - 1].prime <= 1234567890 && mr == 1)
printf("Last factor is probably prime\n");
else if (f[count - 1].prime <= 1234567890 && mr == @)
printf(“Last factor is composite\n");

else if (option[@] == '3') {

largest_prime = primel[PRIME_SIZE 1 - 1];
printf("Largest prime = %11d\n", largest_prime);
sqrtN = (long long)sqrt((double)N);
if (sgrtN > largest_prime) {
printf(“Number is too large!\n");
printf("Square root %11ld must be < %11ld\n", sqrtNn,
largest_prime);
continue;
}
trial_division(&N, g, &kount,
PRIME_SIZE 1, primel);
printf("Factors:\n");
for (1 = 0; i < kount; i++) {
printf("%11d", g[i].prime);
if (g[i].expon > 1)
printf(" ~ %1d\n", g[i].expon);
else
printf("\n");
}
QuickSort(g, kount);
mr = Miller_ Rabin(g[kount - 1].prime, 20);

...udio 2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Main.c

156 if (g[kount - 1].prime <= 1234567890 && mr == 1)
157 printf("Last factor is probably prime\n");
158 else if (g[kount - 1].prime <= 1234567890 && mr == @)
159 printf(“Last factor is composite\n");

160 }

161 if (option[@] >= '1' && option[@] <= '3") {

162 end = clock();

163 sieve_time = (double)(end - begin) / CLOCKS_PER_SEC;
164 printf("Time to do factoring in seconds = %1f\n", sieve_time);
165 }

166 if (option[@] == '4") {

167 int 1, length, bits[64];

168 get_bits(N, &length, bits);

169 for (1 = 0; 1 < length; 1++)

170 printf("%d", bits[1]);

171 printf("\n");

172 }

173 else if (option[@] == '5") {

174 long long radix, power;

175 printf("Enter radix = ");

176 scanf_s("%s", nStr, 128);

177 radix = atoll(nStr);

178 printf("Enter power = ");

179 scanf_s("%s", nStr, 128);

180 power = atoll(nStr);

181 printf("pow_mod M = %11d\n", pow_mod_M(

182 radix, power, N));

183 printf("pow_mod_S = %11d\n", pow_mod_S(

184 radix, power, N));

185 }

186 }

187 return 0;

188 }

