
...udio 2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Main.c 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/*
Author: Pate Williams (c) 1997 ­ 2022
*/

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include "Factoring .h"
#include "Number_Theory.h"

long prime1[PRIME_SIZE_1], sieve1[SIEVE_SIZE_1];
long prime2[PRIME_SIZE_2], sieve2[SIEVE_SIZE_2];
long differ[PRIME_SIZE_2 ­ PRIME_SIZE_1 + 2];

int main(void) {
char nStr[128], option[128];
int d = 0, bm, mr, numdiff = PRIME_SIZE_2 ­ PRIME_SIZE_1 + 1;
double sieve_time;
long count, i, kount, p = 2;
long long largest_prime, N, sqrtN;
struct factor f[32], g[32];
clock_t begin, end;

begin = clock();
Greek_sieve(

MAX_SIEVE_1,
PRIME_SIZE_1,
sieve1,
prime1);

Greek_sieve(
MAX_SIEVE_2,
PRIME_SIZE_2,
sieve2,
prime2);

end = clock();
sieve_time = (double)(end ­ begin) / CLOCKS_PER_SEC;
printf("Time to create prime number ");
printf("sieves in seconds %lf\n", sieve_time);
while (1) {

printf("Menu\n");
printf("1 Brent's Algorithm\n");
printf("2 p ­ 1 Two Stages\n");
printf("3 Trial Division\n");
printf("4 Test get_bits\n");
printf("5 Test pow_mod_M and pow_mod_S\n");
printf("6 Exit\n");
printf("Option = ");
scanf_s("%s", option, 128);
if (option[0] < '1' || option[0] > '6') {

printf("Illegal option, try again\n");
continue;

...udio 2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Main.c 2
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

}
if (option[0] == '6')

break;
printf("N = ");
scanf_s("%s", nStr, 128);
N = atoll(nStr);
if (N <= 3) {

printf("Number is too small\n");
continue;

}
if (N <= 1234567890) {

mr = Miller_Rabin(N, 20);
if (N <= 0) break;
if (mr == 1) {

printf("Number is probably prime\n");
continue;

}
}
if (N == 1) {

break;
}
begin = clock();
if (option[0] == '1') {

bm = do_Brent_Method(&N, f, &count);
if (bm == ­1) {

printf("Brent's method failed\n");
continue;

}
QuickSort(f, count);
printf("Factors:\n");
for (i = 0; i < count; i++) {

printf("%lld", f[i].prime);
if (f[i].expon > 1)

printf(" ^ %ld\n", f[i].expon);
else

printf("\n");
}
mr = Miller_Rabin(f[count ­ 1].prime, 20);
if (f[count ­ 1].prime <= 1234567890 && mr == 1)

printf("Last factor is probably prime\n");
else if (f[count ­ 1].prime <= 1234567890 && mr == 0)

printf("Last factor is composite\n");
}
else if (option[0] == '2') {

int failure = 0;
count = 0;
while (failure == 0) {

long long d = second_stage(
&N, MAX_SIEVE_1, MAX_SIEVE_2,
&failure,
numdiff, differ,
PRIME_SIZE_1, prime1,

...udio 2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Main.c 3
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155

PRIME_SIZE_2, prime2);
if (d > 1) {

int expon = 0;
while (N % d == 0) {

expon++;
N /= d;

}
f[count].expon = expon;
f[count].prime = d;
count++;

}
else if (d == ­1) {

printf("p ­ 1 Method failed\n");
break;

}
}
QuickSort(f, count);
for (i = 0; i < count; i++) {

printf("%lld", f[i].prime);
if (f[i].expon > 1)

printf(" ^ %ld\n", f[i].expon);
else

printf("\n");
}
mr = Miller_Rabin(f[count ­ 1].prime, 20);
if (f[count ­ 1].prime <= 1234567890 && mr == 1)

printf("Last factor is probably prime\n");
else if (f[count ­ 1].prime <= 1234567890 && mr == 0)

printf("Last factor is composite\n");
}
else if (option[0] == '3') {

largest_prime = prime1[PRIME_SIZE_1 ­ 1];
printf("Largest prime = %lld\n", largest_prime);
sqrtN = (long long)sqrt((double)N);
if (sqrtN > largest_prime) {

printf("Number is too large!\n");
printf("Square root %lld must be < %lld\n", sqrtN,
largest_prime);

continue;
}
trial_division(&N, g, &kount,

PRIME_SIZE_1, prime1);
printf("Factors:\n");
for (i = 0; i < kount; i++) {

printf("%lld", g[i].prime);
if (g[i].expon > 1)

printf(" ^ %ld\n", g[i].expon);
else

printf("\n");
}
QuickSort(g, kount);
mr = Miller_Rabin(g[kount ­ 1].prime, 20);

...udio 2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Main.c 4
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

if (g[kount ­ 1].prime <= 1234567890 && mr == 1)
printf("Last factor is probably prime\n");

else if (g[kount ­ 1].prime <= 1234567890 && mr == 0)
printf("Last factor is composite\n");

}
if (option[0] >= '1' && option[0] <= '3') {

end = clock();
sieve_time = (double)(end ­ begin) / CLOCKS_PER_SEC;
printf("Time to do factoring in seconds = %lf\n", sieve_time);

}
if (option[0] == '4') {

int l, length, bits[64];
get_bits(N, &length, bits);
for (l = 0; l < length; l++)

printf("%d", bits[l]);
printf("\n");

}
else if (option[0] == '5') {

long long radix, power;
printf("Enter radix = ");
scanf_s("%s", nStr, 128);
radix = atoll(nStr);
printf("Enter power = ");
scanf_s("%s", nStr, 128);
power = atoll(nStr);
printf("pow_mod_M = %lld\n", pow_mod_M(

radix, power, N));
printf("pow_mod_S = %lld\n", pow_mod_S(

radix, power, N));
}

}
return 0;

}

