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/*
Author: Pate Williams (c) 1997 - 2022
*/

#include <math.h>

#include <stdio.h>
#include <string.h>
#include <time.h>

#include "Factoring .h"
#include "Number_Theory.h"
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12 long primel[PRIME_SIZE_1], sievel[SIEVE_SIZE 1];
13 long prime2[PRIME_SIZE_ 2], sieve2[SIEVE_SIZE 2];
14 long differ[PRIME_SIZE 2 - PRIME_SIZE 1 + 2];

15

16 int main(void) {

17 char nStr[128], option[128];

18 int d = @, bm, mr, numdiff = PRIME_SIZE 2 - PRIME_SIZE 1 + 1;
19 double sieve_time;

20 long count, i, kount, p = 2;

21 long long largest_prime, N, sqrtN;

22 struct factor f[32], g[32];

23 clock_t begin, end;

24

25 begin = clock();

26 Greek_sieve(

27 MAX_SIEVE 1,

28 PRIME_SIZE 1,

29 sievel,

30 primel);

31 Greek_sieve(

32 MAX_SIEVE_ 2,

33 PRIME_SIZE 2,

34 sieve2,

35 prime2);

36 end = clock();

37 sieve_time = (double)(end - begin) / CLOCKS_PER_SEC;
38 printf("Time to create prime number ");

39 printf("sieves in seconds %1f\n", sieve_time);
40 while (1) {

41 printf("Menu\n");

42 printf("1 Brent's Algorithm\n");

43 printf("2 p - 1 Two Stages\n");

44 printf("3 Trial Division\n");

45 printf("4 Test get_bits\n");

46 printf("5 Test pow_mod_M and pow_mod_S\n");
47 printf("6 Exit\n");

48 printf("Option = ");

49 scanf_s("%s", option, 128);

50 if (option[@] < '1' || option[@] > '6"') {
51 printf("Illegal option, try again\n");

52 continue;
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53 }

54 if (option[@] == '6")

55 break;

56 printf("N = ");

57 scanf_s("%s", nStr, 128);

58 N = atoll(nStr);

59 if (N <= 3) {

60 printf("Number is too small\n");

61 continue;

62 }

63 if (N <= 1234567890) {

64 mr = Miller_Rabin(N, 20);

65 if (N <= @) break;

66 if (mr == 1) {

67 printf(“Number is probably prime\n");
68 continue;

69 }

70 }

71 if (N ==1) {

72 break;

73 }

74 begin = clock();

75 if (option[@] == '1") {

76 bm = do_Brent_Method(&N, f, &count);

77 if (bm == -1) {

78 printf("Brent's method failed\n");

79 continue;

80 }

81 QuickSort(f, count);

82 printf("Factors:\n");

83 for (1 = 0; i < count; i++) {

84 printf("%11d", f[i].prime);

85 if (f[i].expon > 1)

86 printf(" ~ %1d\n", f[i].expon);
87 else

88 printf("\n");

89 }

90 mr = Miller_ Rabin(f[count - 1].prime, 20);
91 if (f[count - 1].prime <= 1234567890 && mr == 1)
92 printf("Last factor is probably prime\n");
93 else if (f[count - 1].prime <= 1234567890 && mr == @)
94 printf(“Last factor is composite\n");
95 }

96 else if (option[@] == '2") {

97 int failure = 0;

98 count = 0;

99 while (failure == @) {

100 long long d = second_stage(

101 &N, MAX_SIEVE_1, MAX_SIEVE_ 2,
102 &failure,

103 numdiff, differ,

104 PRIME_SIZE_ 1, primel,
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PRIME_SIZE 2, prime2);
if (d > 1) {
int expon = 0;
while (N % d == 09) {
expon++;
N /= d;
}
f[count].expon
f[count].prime
count++;

expon;
d;

}

else if (d == -1) {
printf("p - 1 Method failed\n");
break;

}

}
QuickSort(f, count);

for (1 = 0; i < count; i++) {
printf("%11d", f[i].prime);
if (f[i].expon > 1)
printf(" ~ %1d\n", f[i].expon);
else
printf("\n");
}
mr = Miller_ Rabin(f[count - 1].prime, 20);
if (f[count - 1].prime <= 1234567890 && mr == 1)
printf("Last factor is probably prime\n");
else if (f[count - 1].prime <= 1234567890 && mr == @)
printf(“Last factor is composite\n");

else if (option[@] == '3') {

largest_prime = primel[PRIME_SIZE 1 - 1];
printf("Largest prime = %11d\n", largest_prime);
sqrtN = (long long)sqrt((double)N);
if (sgrtN > largest_prime) {
printf(“Number is too large!\n");
printf("Square root %11ld must be < %11ld\n", sqrtNn,
largest_prime);
continue;
}
trial_division(&N, g, &kount,
PRIME_SIZE 1, primel);
printf("Factors:\n");
for (1 = 0; i < kount; i++) {
printf("%11d", g[i].prime);
if (g[i].expon > 1)
printf(" ~ %1d\n", g[i].expon);
else
printf("\n");
}
QuickSort(g, kount);
mr = Miller_ Rabin(g[kount - 1].prime, 20);
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156 if (g[kount - 1].prime <= 1234567890 && mr == 1)
157 printf("Last factor is probably prime\n");
158 else if (g[kount - 1].prime <= 1234567890 && mr == @)
159 printf(“Last factor is composite\n");

160 }

161 if (option[@] >= '1' && option[@] <= '3") {

162 end = clock();

163 sieve_time = (double)(end - begin) / CLOCKS_PER_SEC;
164 printf("Time to do factoring in seconds = %1f\n", sieve_time);
165 }

166 if (option[@] == '4") {

167 int 1, length, bits[64];

168 get_bits(N, &length, bits);

169 for (1 = 0; 1 < length; 1++)

170 printf("%d", bits[1]);

171 printf("\n");

172 }

173 else if (option[@] == '5") {

174 long long radix, power;

175 printf("Enter radix = ");

176 scanf_s("%s", nStr, 128);

177 radix = atoll(nStr);

178 printf("Enter power = ");

179 scanf_s("%s", nStr, 128);

180 power = atoll(nStr);

181 printf("pow_mod M = %11d\n", pow_mod_M(

182 radix, power, N));

183 printf("pow_mod_S = %11d\n", pow_mod_S(

184 radix, power, N));

185 }

186 }

187 return 0;

188 }



