
...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/*
Author:  Pate Williams (c) 1997 ­ 2022
*/
#include "Factoring .h"
#include "Number_Theory.h"

long long Brent(long long *N) {
int i, k = 1, l = 1, c = 0;
long long P = 1, g, y = 2, x = 2, x1 = 2;

L2:
x = (x * x + 1) % *N;
P *= (x1 ­ x) % *N;
c++;
if (c == 20) {

g = GCD(P, *N);
if (g == 1)

goto L4;
else {

y = x;
c = 0;
goto L2;

}
}
k­­;
if (k != 0)

goto L2;
g = GCD(P, *N);
if (g > 1)

goto L4;
x1 = x;
k = l;
l *= 2;
for (i = 0; i < k; i++) {

x = (x * x + 1) % *N;
}
y = x;
c = 0;
goto L2;

L4:
do {

y = (y * y + 1) % *N;
g = GCD(x1 ­ y, *N);

} while (g <= 1);
if (g < *N)

return g;
return ­1;

}

int do_Brent_Method(long long *N, struct factor *f, long *count) {
long long brent;

*count = 0;



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c 2
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

while (1) {
brent = Brent(N);
if (brent != ­1) {

int expon = 0;
while (*N % brent == 0) {

expon++;
*N /= brent;

}
f[*count].expon = expon;
f[*count].prime = brent;
*count = *count + 1;
if (*N == 1)

return 0;
if (Miller_Rabin(*N, 20) == 1) {

f[*count].expon = 1;
f[*count].prime = *N;
*count = *count + 1;
return 1;

}
}
else

return ­1;
}

}

long long first_stage(long long *N, int B1,
int *failure, long long *x, int number1,
long *primes1)

{
int c = 0, i = ­1, j = i;
long l = 0, q = 0, q1 = 0;
long long g, xp, x1, y;

*failure = 0;
y = *x;

Step_2:
i++;
if (i >= number1) {

x1 = *x ­ 1;
g = GCD(x1, *N);
if (g == 1) {

*failure = 1;
return ­1;

}
i = j;
*x = y;
goto Step_5;

}
if (i < number1) {

q = primes1[i];
q1 = q;
l = B1 / q;



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c 3
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

}
goto Step_3;

Step_3:
while (q1 <= l)

q1 *= q;
xp = pow_mod_M(*x, q1, *N);
*x = xp;
if (++c < 20)

goto Step_2;
goto Step_4;

Step_4:
x1 = *x ­ 1;
g = GCD(x1, *N);
if (g == 1) {

c = 0;
j = i;
y = *x;
goto Step_2;

}
i = j;
*x = y;
goto Step_5;

Step_5:
q = primes1[++i];
q1 = q;
goto Step_6;

Step_6:
xp = pow_mod_M(*x, q, *N);
x1 = *x ­ 1;
*x = xp;
g = GCD(x1, *N);
if (g == 1) {

q1 *= q;
if (q1 <= B1)

goto Step_6;
else

goto Step_5;
}
if (g == *N) {

*failure = 1;
return ­1;

}
failure = 0;
return g;

}

long long second_stage(
long long *N, int B1,
int B2, int *failure,
long numdiff, long *differs,
long number1, long *primes1,
long number2, long *primes2) {



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c 4
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

int c = 0, i = 0, j = 0, nd = 0;
long long b = 0, g = 0, x, y = 0, P = 0, PP;
long long bd, x1, xb, xp;

for (int k = 0; k < number2 ­ 1; k++) {
long p1 = primes2[k];

if (p1 >= B1) {
long p2 = primes2[k + 1];
differs[nd++] = p2 ­ p1;

}
}
*failure = 0;
x = 2;
g = first_stage(

N, B1, failure, &x,
number1, primes1);

if (!(*failure))
return g;

b = x;
c = 0;
P = 1;
i = ­1;
j = i;
y = x;
goto Step_2;

Step_2:
xp = (long long)pow((double)x, primes1[0]);
x = xp;
goto Step_3;

Step_3:
i++;
if (i == numdiff)

goto Step_6;
bd = (long long)pow((double)b, differs[i]);
x1 = x * bd;
x = x1;
x1 = x ­ 1;
PP = P * x1;
P = PP;
c++;
if (c < 20)

goto Step_3;
goto Step_4;

Step_4:
g = GCD(P, *N);
if (g == 1) {

c = 0;
j = i;
y = x;
goto Step_3;

}



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c 5
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

goto Step_5;
Step_5:

i = j;
x = y;
while (i < nd) {

if (i < 0)
i++;

bd = (long long)pow((double)b, differs[i++]);
xb = x * bd;
x1 = b ­ 1;
x = xb;
g = GCD(x1, *N);
if (g != 1)

break;
}
if (g == *N) {

x = 3;
g = first_stage(N, B1, failure, &x,

number1, primes1);
if (!failure)

return g;
return ­1;

}
return g;

Step_6:
g = GCD(P, *N);
if (g == 1) {

*failure = 1;
return ­1;

}
goto Step_5;
return ­1;

}

int trial_division(long long *N,
struct factor *f, long *count,
long psize, long *prime) {
int found;
long B, d, e, i, j = 0, k, m, n;
long t[8] = { 6, 4, 2, 4, 2, 4, 6, 2 };
long table[8] = { 1, 7, 11, 13, 17, 19, 23, 29 };
long long l, r;

if (*N <= 5) {
*count = 1;
f[0].expon = 1;
switch (*N) {
case 1: f[0].prime = 1; break;
case 2: f[0].prime = 2; break;
case 3: f[0].prime = 3; break;
case 4: f[0].expon = 2; f[0].prime = 2; break;
case 5: f[0].prime = 5; break;



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c 6
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

}
return 1;

}
*count = 0;
B = prime[psize ­ 1];
i = ­1, l = (long long)sqrt((double)*N), m = ­1;

L2:
m++;
if (i == psize) {

i = j ­ 1;
goto L5;

}
d = prime[m];
k = d % 30;
found = 0;
for (n = 0; !found && n < 8; n++) {

found = k == table[n];
if (found) j = n;

}
L3:

r = *N % d;
if (r == 0) {

e = 0;
do {

e++;
*N /= d;

} while (*N % d == 0);
f[*count].expon = e;
f[*count].prime = d;
*count = *count + 1;
if (*N == 1) return 1;
goto L2;

}
if (d >= l) {

if (*N > 1) {
f[*count].expon = 1;
f[*count].prime = *N;
*count = *count + 1;
return 1;

}
}
else if (i < 0) goto L2;

L5:
i = (i + 1) % 8;
d = d + t[i];
if (d > B) return 0;
goto L3;

}

int Partition(struct factor *f, int n, int lo, int hi) {
int pivotIndex = lo + (hi ­ lo) / 2;
struct factor x = f[pivotIndex];



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c 7
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

struct factor t = x;

f[pivotIndex] = f[hi];
f[hi] = t;

int storeIndex = lo;

for (int i = lo; i < hi; i++)
{

if (f[i].prime < x.prime)
{

t = f[i];
f[i] = f[storeIndex];
f[storeIndex++] = t;

}
}

t = f[storeIndex];
f[storeIndex] = f[hi];
f[hi] = t;
return storeIndex;

}

void DoQuickSort(struct factor *f, int n, int p, int r) {
if (p < r)
{

int q = Partition(f, n, p, r);

DoQuickSort(f, n, p, q ­ 1);
DoQuickSort(f, n, q + 1, r);

}
}

void QuickSort(struct factor *f, int n) {
DoQuickSort(f, n, 0, n ­ 1);

}


