...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c

OCooNOOTUVTE, WNER

[ERNY
R o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/*

Author: Pate Williams (c) 1997 - 2022
*/

#include "Factoring .h"

#include "Number_Theory.h"

long long Brent(long long *N) {
inti, k=1, 1=1, c = 0;
long long P =1, g, y = 2, x = 2, x1 = 2;

X = (X * x + 1) % *N;
P *= (x1 - X) % *N;
C++;
if (c == 20) {

g = GCD(P, *N);

if (g == 1)
goto L4;
else {
y = X;
c =0;
goto L2;
}
}
k--;
if (k = 0)
goto L2;
g = GCD(P, *N);
if (g > 1)
goto L4;
x1 = X;
k =1;
1 *= 2;

)
for (1 =0; i< k; i++) {
X = (X * x + 1) % *N;

L4:

(y *y +1) % *N;
GCD(x1 - y, *N);
} while (g <= 1);
if (g < *N)

return g;
return -1;

o <
non

int do_Brent_Method(long long *N, struct factor *f,

long long brent;

*count = O;

long *count) {



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c

53 while (1) {

54 brent = Brent(N);

55 if (brent != -1) {

56 int expon = 0;

57 while (*N % brent == 0) {
58 expon++;

59 *N /= brent;

60 }

61 f[*count].expon = expon;
62 f[*count].prime = brent;
63 *count = *count + 1;

64 if (*N == 1)

65 return 0;

66 if (Miller_Rabin(*N, 20) == 1) {
67 f[*count].expon = 1;
68 f[*count].prime = *N;
69 *count = *count + 1;
70 return 1;

71 }

72 }

73 else

74 return -1;

75 }

76 }

77

78 long long first_stage(long long *N, int B1,
79 int *failure, long long *x, int numberl,
80 long *primesl)

81 {

82 intc=0, i=-1, j =1;

83 long 1 =0, q =0, q1 = 0;

84 long long g, xp, x1, y;

85

86 *failure = 9;

87 y = *x;

88 Step_2:

89 i++;

90 if (i >= numberl) {

91 x1l = *x - 1;

92 g = GCD(x1, *N);

93 if (g == 1) {

94 *failure = 1;

95 return -1;

96 }

97 i=73;

98 *x = y;

99 goto Step_5;

100 }

le1 if (i < numberl) {

102 q = primesl[i];

103 ql = q;

104 1=81/q;



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c

105 }

106 goto Step_3;

107 Step_3:

108 while (q1 <= 1)

109 ql *= q;

110 xp = pow_mod_M(*x, g1, *N);
111 *X = Xp;

112 if (++c < 20)

113 goto Step_2;

114 goto Step_4;

115 Step_4:

116 x1 = *x - 1;

117 g = GCD(x1, *N);

118 if (g == 1) {

119 c = 0;

120 j=1i;

121 y = *x;

122 goto Step_2;

123 }

124 i=7j;

125 *X = y;

126 goto Step_5;

127 Step_5:

128 q = primesl[++i];

129 ql = q;

130 goto Step_6;

131 Step_6:

132 xp = pow_mod_M(*x, q, *N);
133 x1 = *x - 1;

134 *X = Xp;

135 g = GCD(x1, *N);

136 if (g == 1) {

137 ql *= q;

138 if (ql <= B1)

139 goto Step_6;
140 else

141 goto Step_5;
142 }

143 if (g == *N) {

144 *failure = 1;

145 return -1;

146 }

147 failure = 0;

148 return g;

149 }

150

151 1long long second_stage(
152 long long *N, int B1,
153 int B2, int *failure,
154 long numdiff, long *differs,
155 long numberl, long *primesl,

156 long number2, long *primes2) {



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c

157 int c=0, i=0, j=0, nd =9;
158 long long b =0, g =0, x, y =90, P=20, PP;
159 long long bd, x1, xb, xp;

160

161 for (int k = @; k < number2 - 1; k++) {
162 long pl = primes2[k];

163

164 if (p1 >= B1) {

165 long p2 = primes2[k + 1];
166 differs[nd++] = p2 - pl;
167 }

168 }

169 *failure = 9;

170 X = 2;

171 g = first_stage(

172 N, B1l, failure, &x,

173 numberl, primesl);

174 if (! (*failure))

175 return g;

176 b = x;

177 c =0;

178 P=1;

179 i=-1;

180 j = i;

181 y = X;

182 goto Step_2;

183 Step_2:

184 xp = (long long)pow((double)x, primesl[0]);
185 X = Xp;

186 goto Step_3;

187 Step_3:

188 i++;

189 if (i == numdiff)

190 goto Step_6;

191 bd = (long long)pow((double)b, differs[i]);
192 x1 = x * bd;

193 X = xX1;

194 x1 =x - 1;

195 PP = P * x1;

196 P = PP;

197 C++;

198 if (c < 20)

199 goto Step_3;

200 goto Step_4;

201 Step_4:

202 g = GCD(P, *N);

203 if (g == 1) {

204 C =0;

205 j = i;

206 y = X;

207 goto Step_3;

208 }



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c

209 goto Step_5;

210 Step_5:

211 i=7;

212 X =Y,

213 while (i < nd) {

214 if (1 < 9)

215 i++;

216 bd = (long long)pow((double)b, differs[i++]);
217 xb = x * bd;

218 x1 =b - 1;

219 X = xb;

220 g = GCD(x1, *N);

221 if (g !'= 1)

222 break;

223 }

224 if (g == *N) {

225 X = 3;

226 g = first_stage(N, B1l, failure, &x,
227 numberl, primesl);

228 if (!failure)

229 return g;

230 return -1;

231 }

232 return g;

233 Step_6:

234 g = GCD(P, *N);

235 if (g == 1) {

236 *failure = 1;

237 return -1;

238 }

239 goto Step_5;

240 return -1;

241 }

242

243 int trial_division(long long *N,

244 struct factor *f, long *count,

245 long psize, long *prime) {

246 int found;

247 long B, d, e, i, j = 0, k, m, n;
248 long t[8] = { 6, 4, 2, 4, 2, 4, 6, 2 };
249 long table[8] = { 1, 7, 11, 13, 17, 19, 23, 29 };
250 long long 1, r;

251

252 if (*N <= 5) {

253 *count = 1;

254 f[@].expon = 1;

255 switch (*N) {

256 case 1: f[@].prime = 1; break;
257 case 2: f[@].prime = 2; break;
258 case 3: f[@].prime = 3; break;
259 case 4: f[@].expon = 2; f[@].prime = 2; break;
260 case 5: f[@].prime = 5; break;



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c

261 }

262 return 1;

263 }

264 *count = 0;

265 B = prime[psize - 1];

266 i=-1, 1 = (long long)sqrt((double)*N), m = -1;
267 L2:

268 m++;

269 if (i == psize) {

270 i=9-1;

271 goto L5;

272 }

273 d = prime[m];

274 k =d% 30;

275 found = 9;

276 for (n = @; !found & n < 8; n++) {
277 found = k == table[n];
278 if (found) j = n;

279 }

280 L3:

281 r=* % d;

282 if (r == 0) {

283 e = 0;

284 do {

285 e++;

286 *N /= d;

287 } while (*N % d == 0);
288 f[*count].expon = e;

289 f[*count].prime = d;

290 *count = *count + 1;

291 if (*N == 1) return 1;
292 goto L2;

293 }

294 if (d >= 1) {

295 if (*N > 1) {

296 f[*count].expon = 1;
297 f[*count].prime = *N;
298 *count = *count + 1;
299 return 1;

300 }

301 }

302 else if (i < @) goto L2;

303 L5:

304 i=(1+1)%8;

305 d=d+ t[i];

306 if (d > B) return 0;

307 goto L3;

308 }

309

310 int Partition(struct factor *f, int n, int lo, int hi) {
311 int pivotIndex = lo + (hi - 1lo) / 2;

312 struct factor x = f[pivotIndex];



...2015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring.c

313 struct factor t = x;

314

315 f[pivotIndex] = f[hi];

316 f[hi] = t;

317

318 int storeIndex = lo;

319

320 for (int i = lo; i < hi; i++)
321 {

322 if (f[i].prime < x.prime)
323 {

324 t = f[i];

325 f[i] = f[storeIndex];
326 f[storeIndex++] = t;

327 }

328 }

329

330 t = f[storeIndex];

331 f[storeIndex] = f[hi];

332 f[hi] = t;

333 return storelndex;

334 }

335

336 void DoQuickSort(struct factor *f, int n, int p, int r) {
337 if (p < r)

338 {

339 int q = Partition(f, n, p, r);
340

341 DoQuickSort(f, n, p, q - 1);
342 DoQuickSort(f, n, q + 1, r);
343 }

344 }

345

346 void QuickSort(struct factor *f, int n) {
347 DoQuickSort(f, n, @, n - 1);

348 }



