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/*
Author:  Pate Williams (c) 1997 ­ 2022
*/
#include "Factoring .h"
#include "Number_Theory.h"

long long Brent(long long *N) {
int i, k = 1, l = 1, c = 0;
long long P = 1, g, y = 2, x = 2, x1 = 2;

L2:
x = (x * x + 1) % *N;
P *= (x1 ­ x) % *N;
c++;
if (c == 20) {

g = GCD(P, *N);
if (g == 1)

goto L4;
else {

y = x;
c = 0;
goto L2;

}
}
k­­;
if (k != 0)

goto L2;
g = GCD(P, *N);
if (g > 1)

goto L4;
x1 = x;
k = l;
l *= 2;
for (i = 0; i < k; i++) {

x = (x * x + 1) % *N;
}
y = x;
c = 0;
goto L2;

L4:
do {

y = (y * y + 1) % *N;
g = GCD(x1 ­ y, *N);

} while (g <= 1);
if (g < *N)

return g;
return ­1;

}

int do_Brent_Method(long long *N, struct factor *f, long *count) {
long long brent;

*count = 0;
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while (1) {
brent = Brent(N);
if (brent != ­1) {

int expon = 0;
while (*N % brent == 0) {

expon++;
*N /= brent;

}
f[*count].expon = expon;
f[*count].prime = brent;
*count = *count + 1;
if (*N == 1)

return 0;
if (Miller_Rabin(*N, 20) == 1) {

f[*count].expon = 1;
f[*count].prime = *N;
*count = *count + 1;
return 1;

}
}
else

return ­1;
}

}

long long first_stage(long long *N, int B1,
int *failure, long long *x, int number1,
long *primes1)

{
int c = 0, i = ­1, j = i;
long l = 0, q = 0, q1 = 0;
long long g, xp, x1, y;

*failure = 0;
y = *x;

Step_2:
i++;
if (i >= number1) {

x1 = *x ­ 1;
g = GCD(x1, *N);
if (g == 1) {

*failure = 1;
return ­1;

}
i = j;
*x = y;
goto Step_5;

}
if (i < number1) {

q = primes1[i];
q1 = q;
l = B1 / q;
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}
goto Step_3;

Step_3:
while (q1 <= l)

q1 *= q;
xp = pow_mod_M(*x, q1, *N);
*x = xp;
if (++c < 20)

goto Step_2;
goto Step_4;

Step_4:
x1 = *x ­ 1;
g = GCD(x1, *N);
if (g == 1) {

c = 0;
j = i;
y = *x;
goto Step_2;

}
i = j;
*x = y;
goto Step_5;

Step_5:
q = primes1[++i];
q1 = q;
goto Step_6;

Step_6:
xp = pow_mod_M(*x, q, *N);
x1 = *x ­ 1;
*x = xp;
g = GCD(x1, *N);
if (g == 1) {

q1 *= q;
if (q1 <= B1)

goto Step_6;
else

goto Step_5;
}
if (g == *N) {

*failure = 1;
return ­1;

}
failure = 0;
return g;

}

long long second_stage(
long long *N, int B1,
int B2, int *failure,
long numdiff, long *differs,
long number1, long *primes1,
long number2, long *primes2) {
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int c = 0, i = 0, j = 0, nd = 0;
long long b = 0, g = 0, x, y = 0, P = 0, PP;
long long bd, x1, xb, xp;

for (int k = 0; k < number2 ­ 1; k++) {
long p1 = primes2[k];

if (p1 >= B1) {
long p2 = primes2[k + 1];
differs[nd++] = p2 ­ p1;

}
}
*failure = 0;
x = 2;
g = first_stage(

N, B1, failure, &x,
number1, primes1);

if (!(*failure))
return g;

b = x;
c = 0;
P = 1;
i = ­1;
j = i;
y = x;
goto Step_2;

Step_2:
xp = (long long)pow((double)x, primes1[0]);
x = xp;
goto Step_3;

Step_3:
i++;
if (i == numdiff)

goto Step_6;
bd = (long long)pow((double)b, differs[i]);
x1 = x * bd;
x = x1;
x1 = x ­ 1;
PP = P * x1;
P = PP;
c++;
if (c < 20)

goto Step_3;
goto Step_4;

Step_4:
g = GCD(P, *N);
if (g == 1) {

c = 0;
j = i;
y = x;
goto Step_3;

}
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goto Step_5;
Step_5:

i = j;
x = y;
while (i < nd) {

if (i < 0)
i++;

bd = (long long)pow((double)b, differs[i++]);
xb = x * bd;
x1 = b ­ 1;
x = xb;
g = GCD(x1, *N);
if (g != 1)

break;
}
if (g == *N) {

x = 3;
g = first_stage(N, B1, failure, &x,

number1, primes1);
if (!failure)

return g;
return ­1;

}
return g;

Step_6:
g = GCD(P, *N);
if (g == 1) {

*failure = 1;
return ­1;

}
goto Step_5;
return ­1;

}

int trial_division(long long *N,
struct factor *f, long *count,
long psize, long *prime) {
int found;
long B, d, e, i, j = 0, k, m, n;
long t[8] = { 6, 4, 2, 4, 2, 4, 6, 2 };
long table[8] = { 1, 7, 11, 13, 17, 19, 23, 29 };
long long l, r;

if (*N <= 5) {
*count = 1;
f[0].expon = 1;
switch (*N) {
case 1: f[0].prime = 1; break;
case 2: f[0].prime = 2; break;
case 3: f[0].prime = 3; break;
case 4: f[0].expon = 2; f[0].prime = 2; break;
case 5: f[0].prime = 5; break;
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}
return 1;

}
*count = 0;
B = prime[psize ­ 1];
i = ­1, l = (long long)sqrt((double)*N), m = ­1;

L2:
m++;
if (i == psize) {

i = j ­ 1;
goto L5;

}
d = prime[m];
k = d % 30;
found = 0;
for (n = 0; !found && n < 8; n++) {

found = k == table[n];
if (found) j = n;

}
L3:

r = *N % d;
if (r == 0) {

e = 0;
do {

e++;
*N /= d;

} while (*N % d == 0);
f[*count].expon = e;
f[*count].prime = d;
*count = *count + 1;
if (*N == 1) return 1;
goto L2;

}
if (d >= l) {

if (*N > 1) {
f[*count].expon = 1;
f[*count].prime = *N;
*count = *count + 1;
return 1;

}
}
else if (i < 0) goto L2;

L5:
i = (i + 1) % 8;
d = d + t[i];
if (d > B) return 0;
goto L3;

}

int Partition(struct factor *f, int n, int lo, int hi) {
int pivotIndex = lo + (hi ­ lo) / 2;
struct factor x = f[pivotIndex];
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struct factor t = x;

f[pivotIndex] = f[hi];
f[hi] = t;

int storeIndex = lo;

for (int i = lo; i < hi; i++)
{

if (f[i].prime < x.prime)
{

t = f[i];
f[i] = f[storeIndex];
f[storeIndex++] = t;

}
}

t = f[storeIndex];
f[storeIndex] = f[hi];
f[hi] = t;
return storeIndex;

}

void DoQuickSort(struct factor *f, int n, int p, int r) {
if (p < r)
{

int q = Partition(f, n, p, r);

DoQuickSort(f, n, p, q ­ 1);
DoQuickSort(f, n, q + 1, r);

}
}

void QuickSort(struct factor *f, int n) {
DoQuickSort(f, n, 0, n ­ 1);

}


