...015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring .h

OooNOOTUVTDS WNER

VUV UDDEDNDEMDDIEMDEDNDWWWWWWWWWWNNNNNNMNNNNRRRPRPRRERRRPRPR
NPRPOUOVUONONTUITDNWNROOVONOONTITDNWNRPRPROUOUONOTUDNWNRPROUOUOONOUDNWNRO®

/*

Author: Pate Williams (c) 1997 - 2022
*/

#pragma once

#include "Number_Theory.h"

#include <math.h>

struct factor { long expon; long long prime; };

int do_Brent_Method(

long long *N,
struct factor *f,

long *count);
/*
returns -1 failure
returns @ complete factorization within factor base
returns 1 complete factorization with Miller-Rabin test
Algorithm 8.5.2 (Pollard rho). See "A Course in
Computational Algebraic Number Theory" by Henri
Cohen page 429. Brent's modification. The number count
is the number of factors.
*/
long long first_stage(long long *n, int B1,

int *failure, long long *x, int numberl,

long *primesl);
long long second_stage(

long long *n, int B1,

int B2, int *failure,

long numdiff, long *differs,

long numberl, long *primesl,

long number2, long *primes2);
/*
returns -1 failure and failure =1
returns g a factor otherwise
Algorithm 8.8.3 (p - 1 with Stage 2). See "A Course in
Computational Algebraic Number Theory" by Henri Cohen
page 441.
*/
int trial_division(

long long *N,
struct factor *f,

long *count,

long psize,

long *prime);
/*
returns 1 for success and @ for failure
Algorithm 8.1.1 (Trial Division). See "A Course in
Computational Algebraic Number Theory" by Henri
Cohen page 420. The number count is the number of
factors and psize is the number of primes.
*/
void QuickSort(struct factor *f, int n);

...015\Projects\BrentAlgorithmC\BrentAlgorithmC\Factoring .h

53 /* Quick sort algorithm from "Algortihms" by
54 Thomas H. Cormen, et. al. */

