...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.c

1 /%
2 Author: Pate Williams (c) 1997 - 2022
3 */
4 #include "Number_Theory.h"
5
6 int Jacobi(long long a, long long n) {
7 if (a == 0)
8 return 0;
9 if (a == 1)
10 return 1;
11 int e = 0;
12 long long al = a;
13 long long quotient = al / 2;
14 long long remainder = al % 2;
15 while (remainder == 0) {
16 e++;
17 al = quotient;
18 quotient = al / 2;
19 remainder = al % 2;
20 }
21 int s = 0;
22 if (e % 2 == 09)
23 s = 1;
24 else {
25 long long mod8 = n % 8;
26 if (mod8 == 1 || mod8 == 7)
27 s = +1;
28 if (mod8 == 3 || mod8 == 5)
29 s = -1;
30 }
31 long long mod4 = n % 4;
32 long long ald = al % 4;
33 if (mod4 == 3 && al4 == 3)
34 s = -s;
35 long long n1 = n % al;
36 return s * Jacobi(nl, al);
37 }
38
39 int Miller_Rabin(long long n, int t) {
40 long i, j, s = 0;
41 long long a, my n1 =n -1, r =nl, y;
42
43 if (n==2 || n==3)
44 return 1;
45 m=n%2;
46 if (m == 0)
47 return 0;
48 m=r%2;
49 while (m == @)
50 {
51 r=r/2;
52 m=r%2;

...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.c

53 S++;

54 }

55 for (1 = 0; i < t; i++)

56 {

57 a = random_range(2, n - 2);
58 y = pow_mod_M(a, r, n);

59 if (y < 0)

60 y += n;

61 if (y 1=18& y !=n1) {

62 j=1;

63 while (j <=s - 1 & y !=nl1) {
64 y=(*y)%n;

65 if (y == 1)

66 return 0;

67 Jj++;

68 }

69 if (y != n1)

70 return 0;

71 }

72 }

73 return 1;

74}

75

76 long long GCD(long long a, long long b) {
77 long long r;

78

79 while (b != @) {

80 r=ab%b;

81 a = b;

82 b =r;

83 }

84 return a;

85 }

86

87 long get_bit(long i, long *sieve) {
88 long b = i % BITS_PER_LONG;

89 long ¢ = i / BITS_PER_LONG;

90

91 return (sieve[c] >> (BITS_PER_LONG_1 - b)) & 1;
922 }

93

94 void set_bit(long i, long v, long *sieve) {
95 long b = i % BITS_PER_LONG;

96 long ¢ = i / BITS_PER_LONG;

97 long mask = 1 << (BITS_PER_LONG_ 1 - b);
98

99 if (v == 1)

100 sieve[c] |= mask;

lo1 else

102 sieve[c] &= ~mask;

103 }

104

...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.c

105 void get_bits(long long b, int *number, int *bits) {
106 int i = 0;

107 do {

108 bits[i++] = b % 2;

109 b=>b/ 2;

110 } while (b > 9);

111 *number = i;

112}

113

114 1long long pow_mod_S(long long x, long long b, long long n) {
115 int bits[64], i, 1;

116 long long z = 1;

117

118 get_bits(b, &1, bits);

119 for (i1 =1-1; 1i>=0; i--) {
120 z=(z *2z)%n;

121 if (z < 9)

122 Z += n;

123 if (bits[i] == 1) {

124 z=(z *x) %n;

125 if (z < Q)

126 Z += n;

127 }

128 }

129 return z;

130 }

131

132 1long long pow_mod_M(long long a, long long k, long long n) {
133 int t, bits[64];

134 long long A = a, b = 1;

135

136 if (k == 0)

137 return b;

138 get _bits(k, &t, bits);

139 if (bits[@] == 1)

140 b = a;

141 for (int i = 1; i < t; i++) {
142 A= (A*A) %n;

143 if (bits[i] == 1)

144 b= (A*Db)%n;

145 }

146 return b;

147 '}

148

149 1long long random_range(

150 long long lower, long long upper)
151 {

152 long long r;

153

154 while (1) {

155 r = lower + (long long)((double)(upper - lower)

156 * ((double)rand() / RAND_MAX));

...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.c

157 if (r >= lower && r <= upper)
158 return r;

159 }

160 }

161l

162 void Greek_sieve(

163 long bound,

164 long psize,

165 long *sieve,

166 long *prime) {

167 long ¢, i, inc, p = 0;

168

169 set_bit(e, 0, sieve);

170 set_bit(1, o, sieve);

171 set_bit(2, 1, sieve);

172 for (i = 3; 1 <= bound; i++)

173 set_bit(i, i & 1, sieve);

174 c = 3;

175 do {

176 i=c*c inc = c + c;

177 while (i <= bound) {

178 set_bit(i, @, sieve);

179 i += inc;

180 }

181 C += 2;

182 while (!get _bit(c, sieve)) c++;
183 } while (¢ * ¢ <= bound);

184 for (1 = 0; i < psize; i++) {

185 while (!get_bit(p, sieve)) p++;
186 prime[i] = p++;

187 }

188 }

189

190 void Greek_sieve_1(long *sieve, long *prime) {
191 Greek_sieve(

192 MAX_SIEVE 1,

193 PRIME_SIZE 1,

194 sieve, prime);

195 }

196 void Greek_sieve_2(long *sieve, long *prime) {
197 Greek_sieve(

198 MAX_SIEVE_ 2,

199 PRIME_SIZE 2,

200 sieve, prime);

201 }

