
...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.c 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/*
Author: Pate Williams (c) 1997 ­ 2022
*/
#include "Number_Theory.h"

int Jacobi(long long a, long long n) {
if (a == 0)

return 0;
if (a == 1)

return 1;
int e = 0;
long long a1 = a;
long long quotient = a1 / 2;
long long remainder = a1 % 2;
while (remainder == 0) {

e++;
a1 = quotient;
quotient = a1 / 2;
remainder = a1 % 2;

}
int s = 0;
if (e % 2 == 0)

s = 1;
else {

long long mod8 = n % 8;
if (mod8 == 1 || mod8 == 7)

s = +1;
if (mod8 == 3 || mod8 == 5)

s = ­1;
}
long long mod4 = n % 4;
long long a14 = a1 % 4;
if (mod4 == 3 && a14 == 3)

s = ­s;
long long n1 = n % a1;
return s * Jacobi(n1, a1);

}

int Miller_Rabin(long long n, int t) {
long i, j, s = 0;
long long a, m, n1 = n ­ 1, r = n1, y;

if (n == 2 || n == 3)
return 1;

m = n % 2;
if (m == 0)

return 0;
m = r % 2;
while (m == 0)
{

r = r / 2;
m = r % 2;

...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.c 2
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

s++;
}
for (i = 0; i < t; i++)
{

a = random_range(2, n ­ 2);
y = pow_mod_M(a, r, n);
if (y < 0)

y += n;
if (y != 1 && y != n1) {

j = 1;
while (j <= s ­ 1 && y != n1) {

y = (y * y) % n;
if (y == 1)

return 0;
j++;

}
if (y != n1)

return 0;
}

}
return 1;

}

long long GCD(long long a, long long b) {
long long r;

while (b != 0) {
r = a % b;
a = b;
b = r;

}
return a;

}

long get_bit(long i, long *sieve) {
long b = i % BITS_PER_LONG;
long c = i / BITS_PER_LONG;

return (sieve[c] >> (BITS_PER_LONG_1 ­ b)) & 1;
}

void set_bit(long i, long v, long *sieve) {
long b = i % BITS_PER_LONG;
long c = i / BITS_PER_LONG;
long mask = 1 << (BITS_PER_LONG_1 ­ b);

if (v == 1)
sieve[c] |= mask;

else
sieve[c] &= ~mask;

}

...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.c 3
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

void get_bits(long long b, int *number, int *bits) {
int i = 0;
do {

bits[i++] = b % 2;
b = b / 2;

} while (b > 0);
*number = i;

}

long long pow_mod_S(long long x, long long b, long long n) {
int bits[64], i, l;
long long z = 1;

get_bits(b, &l, bits);
for (i = l ­ 1; i >= 0; i­­) {

z = (z * z) % n;
if (z < 0)

z += n;
if (bits[i] == 1) {

z = (z * x) % n;
if (z < 0)

z += n;
}

}
return z;

}

long long pow_mod_M(long long a, long long k, long long n) {
int t, bits[64];
long long A = a, b = 1;

if (k == 0)
return b;

get_bits(k, &t, bits);
if (bits[0] == 1)

b = a;
for (int i = 1; i < t; i++) {

A = (A * A) % n;
if (bits[i] == 1)

b = (A * b) % n;
}
return b;

}

long long random_range(
long long lower, long long upper)

{
long long r;

while (1) {
r = lower + (long long)((double)(upper ­ lower)

* ((double)rand() / RAND_MAX));

...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.c 4
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

if (r >= lower && r <= upper)
return r;

}
}

void Greek_sieve(
long bound,
long psize,
long *sieve,
long *prime) {
long c, i, inc, p = 0;

set_bit(0, 0, sieve);
set_bit(1, 0, sieve);
set_bit(2, 1, sieve);
for (i = 3; i <= bound; i++)

set_bit(i, i & 1, sieve);
c = 3;
do {

i = c * c, inc = c + c;
while (i <= bound) {

set_bit(i, 0, sieve);
i += inc;

}
c += 2;
while (!get_bit(c, sieve)) c++;

} while (c * c <= bound);
for (i = 0; i < psize; i++) {

while (!get_bit(p, sieve)) p++;
prime[i] = p++;

}
}

void Greek_sieve_1(long *sieve, long *prime) {
Greek_sieve(

MAX_SIEVE_1,
PRIME_SIZE_1,
sieve, prime);

}
void Greek_sieve_2(long *sieve, long *prime) {

Greek_sieve(
MAX_SIEVE_2,
PRIME_SIZE_2,
sieve, prime);

}

