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/*
Author:  Pate Williams (c) 1997 ­ 2022
*/
#include "Number_Theory.h"

int Jacobi(long long a, long long n) {
if (a == 0)

return 0;
if (a == 1)

return 1;
int e = 0;
long long a1 = a;
long long quotient = a1 / 2;
long long remainder = a1 % 2;
while (remainder == 0) {

e++;
a1 = quotient;
quotient = a1 / 2;
remainder = a1 % 2;

}
int s = 0;
if (e % 2 == 0)

s = 1;
else {

long long mod8 = n % 8;
if (mod8 == 1 || mod8 == 7)

s = +1;
if (mod8 == 3 || mod8 == 5)

s = ­1;
}
long long mod4 = n % 4;
long long  a14 = a1 % 4;
if (mod4 == 3 && a14 == 3)

s = ­s;
long long n1 = n % a1;
return s * Jacobi(n1, a1);

}

int Miller_Rabin(long long n, int t) {
long i, j, s = 0;
long long a, m, n1 = n ­ 1, r = n1, y;

if (n == 2 || n == 3)
return 1;

m = n % 2;
if (m == 0)

return 0;
m = r % 2;
while (m == 0)
{

r = r / 2;
m = r % 2;
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s++;
}
for (i = 0; i < t; i++)
{

a = random_range(2, n ­ 2);
y = pow_mod_M(a, r, n);
if (y < 0)

y += n;
if (y != 1 && y != n1) {

j = 1;
while (j <= s ­ 1 && y != n1) {

y = (y * y) % n;
if (y == 1)

return 0;
j++;

}
if (y != n1)

return 0;
}

}
return 1;

}

long long GCD(long long a, long long b) {
long long r;

while (b != 0) {
r = a % b;
a = b;
b = r;

}
return a;

}

long get_bit(long i, long *sieve) {
long b = i % BITS_PER_LONG;
long c = i / BITS_PER_LONG;

return (sieve[c] >> (BITS_PER_LONG_1 ­ b)) & 1;
}

void set_bit(long i, long v, long *sieve) {
long b = i % BITS_PER_LONG;
long c = i / BITS_PER_LONG;
long mask = 1 << (BITS_PER_LONG_1 ­ b);

if (v == 1)
sieve[c] |= mask;

else
sieve[c] &= ~mask;

}
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void get_bits(long long b, int *number, int *bits) {
int i = 0;
do {

bits[i++] = b % 2;
b = b / 2;

} while (b > 0);
*number = i;

}

long long pow_mod_S(long long x, long long b, long long n) {
int bits[64], i, l;
long long z = 1;

get_bits(b, &l, bits);
for (i = l ­ 1; i >= 0; i­­) {

z = (z * z) % n;
if (z < 0)

z += n;
if (bits[i] == 1) {

z = (z * x) % n;
if (z < 0)

z += n;
}

}
return z;

}

long long pow_mod_M(long long a, long long k, long long n) {
int t, bits[64];
long long A = a, b = 1;

if (k == 0)
return b;

get_bits(k, &t, bits);
if (bits[0] == 1)

b = a;
for (int i = 1; i < t; i++) {

A = (A * A) % n;
if (bits[i] == 1)

b = (A * b) % n;
}
return b;

}

long long random_range(
long long lower, long long upper)

{
long long r;

while (1) {
r = lower + (long long)((double)(upper ­ lower) 

* ((double)rand() / RAND_MAX));
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if (r >= lower && r <= upper)
return r;

}
}

void Greek_sieve(
long bound,
long psize,
long *sieve,
long *prime) {
long c, i, inc, p = 0;

set_bit(0, 0, sieve);
set_bit(1, 0, sieve);
set_bit(2, 1, sieve);
for (i = 3; i <= bound; i++)

set_bit(i, i & 1, sieve);
c = 3;
do {

i = c * c, inc = c + c;
while (i <= bound) {

set_bit(i, 0, sieve);
i += inc;

}
c += 2;
while (!get_bit(c, sieve)) c++;

} while (c * c <= bound);
for (i = 0; i < psize; i++) {

while (!get_bit(p, sieve)) p++;
prime[i] = p++;

}
}

void Greek_sieve_1(long *sieve, long *prime) {
Greek_sieve(

MAX_SIEVE_1,
PRIME_SIZE_1,
sieve, prime);

}
void Greek_sieve_2(long *sieve, long *prime) {

Greek_sieve(
MAX_SIEVE_2,
PRIME_SIZE_2,
sieve, prime);

}


