...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.h

OooNOOTUVTDS WNER

viuunpbpbsbbd,pDdDPE,DEIEPPPERPWWWWWWWWWWNNNNNMNNNMNNONMNMNMNNRERPRRERPERPRERPRPRERRRER
NFRPOUOVWONOTUDDWNROCOVONOOTUPRWNROOVONOUUPDEWNROOVONOOTUVUPD,WNEREDOO

/*

Author: Pate Williams (c) 1997 - 2022
*/

#pragma once

#include <stdlib.h>

#define BITS_PER_LONG 32

#define BITS_PER_LONG_1 31

#define SIEVE_SIZE 1 (MAX_SIEVE_1 / BITS_PER_LONG + 1)
#define MAX_SIEVE_1 20000001

#define PRIME_SIZE 1 1489331

#define SIEVE_SIZE 2 (MAX_SIEVE_2 / BITS_PER_LONG + 1)
#define MAX_SIEVE_2 1000000001

#define PRIME_SIZE 2 508475341

int Jacobi(long long a, long long n);
int Miller_Rabin(long long n, int t);
/*
Probabilistic Prime Number Test
returns 1 for prime
returns @ for composite number
t is the security parameter t = 20 is good
"Handbook of Applied Cryptography”
Alfred J. Menezes among others
4.24 Algorithm page 139
*/
void Greek_sieve(
long bound,
long psize,
long *sieve,
long *prime);
void Greek_sieve 1(
long *sieve,
long *prime);
void Greek_sieve 2(
long *sieve,
long *prime);
/*
Sieves of Eratosthenes
100,000,000 5,000,000 9,000,000 maximum sizes
*/
long long GCD(long long a, long long b);
/*
Greatest Common Divisor
*/
void get_bits(long long b, int *number, int *bits);

long long pow_mod_S(long long x, long long b, long long n);
long long pow_mod_M(long long x, long long b, long long n);

/*
Raising a large number to a possibly large power taking

the modulus as you go get_bits helper function S = Stinson,

M = Menezes



...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.h

53
54
55
56
57

*/

long long random_range(long long lower, long long upper);

/*

returns a random number, r, in the range lower <= r << upper

*/



