
...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.h 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/*
Author: Pate Williams (c) 1997 ­ 2022
*/
#pragma once
#include <stdlib.h>

#define BITS_PER_LONG 32
#define BITS_PER_LONG_1 31
#define SIEVE_SIZE_1 (MAX_SIEVE_1 / BITS_PER_LONG + 1)
#define MAX_SIEVE_1 2000000l
#define PRIME_SIZE_1 148933l
#define SIEVE_SIZE_2 (MAX_SIEVE_2 / BITS_PER_LONG + 1)
#define MAX_SIEVE_2 100000000l
#define PRIME_SIZE_2 50847534l

int Jacobi(long long a, long long n);
int Miller_Rabin(long long n, int t);
/*
Probabilistic Prime Number Test
returns 1 for prime
returns 0 for composite number
t is the security parameter t = 20 is good
"Handbook of Applied Cryptography"
Alfred J. Menezes among others
4.24 Algorithm page 139
*/
void Greek_sieve(

long bound,
long psize,
long *sieve,
long *prime);

void Greek_sieve_1(
long *sieve,
long *prime);

void Greek_sieve_2(
long *sieve,
long *prime);

/*
Sieves of Eratosthenes
100,000,000 5,000,000 9,000,000 maximum sizes
*/
long long GCD(long long a, long long b);
/*
Greatest Common Divisor
*/
void get_bits(long long b, int *number, int *bits);
long long pow_mod_S(long long x, long long b, long long n);
long long pow_mod_M(long long x, long long b, long long n);
/*
Raising a large number to a possibly large power taking
the modulus as you go get_bits helper function S = Stinson,
M = Menezes

...\Projects\BrentAlgorithmC\BrentAlgorithmC\Number_Theory.h 2
53
54
55
56
57

*/
long long random_range(long long lower, long long upper);
/*
returns a random number, r, in the range lower <= r << upper
*/

