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using System;

namespace AtomicGroundStateEnergiesGaussian
{
    class BerylliumAtom
    {
        private Integration integ;
        private double N;
        private int Z;
        public double integ1, integ2, integ3;
        public double integ4, integ5, integ6;
        public double integ7, integ8, integ9;
        public double integA, integB, integC;
        public double integD, integE;
        public BerylliumAtom()
        {
            integ = new Integration();
        }

        public double Psi(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double exp1 = Math.Exp(-alpha[0] * r1);
            double exp2 = Math.Exp(-alpha[1] * r2);
            double exp3 = Math.Exp(-alpha[2] * r2);
            double exp4 = Math.Exp(-alpha[3] * r12);
            double exp5 = Math.Exp(-alpha[4] * r13);
            double exp6 = Math.Exp(-alpha[4] * r14);
            double exp7 = Math.Exp(-alpha[4] * r23);
            double exp8 = Math.Exp(-alpha[4] * r24);
            double exp9 = Math.Exp(-alpha[4] * r34);

            return exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9;
        }

        public double Psi2(double[] x, double[] alpha)
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        {
            double psi = Psi(x, alpha);

            return psi * psi;
        }

        public double Normalize(double[] alpha, int nSteps)
        {
            double[] lower = new double[12];
            double[] upper = new double[12];
            int[] steps = new int[12];

            lower[0] = 0.001;
            lower[1] = 0.001;
            lower[2] = 0.001;
            lower[3] = 0.001;
            lower[4] = 0.001;
            lower[5] = 0.001;
            lower[6] = 0.001;
            lower[7] = 0.001;
            lower[8] = 0.001;
            lower[9] = 0.001;
            lower[10] = 0.001;
            lower[11] = 0.001;

            upper[0] = 10.0;
            upper[1] = 10.0;
            upper[2] = 10.0;
            upper[3] = 10.0;
            upper[4] = 10.0;
            upper[5] = 10.0;
            upper[6] = 10.0;
            upper[7] = 10.0;
            upper[8] = 10.0;
            upper[9] = 10.0;
            upper[10] = 10.0;
            upper[11] = 10.0;

            for (int i = 0; i < 12; i++)
                steps[i] = nSteps;

            double norm = Math.Sqrt(integ.Integrate(
                lower, upper, alpha, Psi2, 12, steps));

            return norm;
        }

        public double Integrand1(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
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            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double term = -2.0 * alpha[0] / r1 + alpha[0] * alpha[0];
            double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
            double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
            double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
            double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
            double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
            double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
            double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
            double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
            double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
            double expA = Math.Exp(-2.0 * alpha[9] * r34);

            return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9 * expA;
        }

        public double Integrand2(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double term = -2.0 * alpha[1] / r1 + alpha[1] * alpha[1];
            double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
            double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
            double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
            double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
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            double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
            double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
            double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
            double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
            double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
            double expA = Math.Exp(-2.0 * alpha[9] * r34);

            return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9 * expA;
        }

        public double Integrand3(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double term = -2.0 * alpha[2] / r1 + alpha[2] * alpha[2];
            double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
            double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
            double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
            double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
            double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
            double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
            double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
            double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
            double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
            double expA = Math.Exp(-2.0 * alpha[9] * r34);

            return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9 * expA;
        }

        public double Integrand4(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
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                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double term = -2.0 * alpha[3] / r1 + alpha[3] * alpha[3];
            double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
            double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
            double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
            double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
            double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
            double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
            double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
            double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
            double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
            double expA = Math.Exp(-2.0 * alpha[9] * r34);

            return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9 * expA;
        }

        public double Integrand5(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double term = 1.0 / r1;
            double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
            double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
            double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
            double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
            double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
            double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
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            double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
            double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
            double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
            double expA = Math.Exp(-2.0 * alpha[9] * r34);

            return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9 * expA;
        }

        public double Integrand6(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double term = 1.0 / r2;
            double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
            double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
            double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
            double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
            double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
            double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
            double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
            double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
            double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
            double expA = Math.Exp(-2.0 * alpha[9] * r34);

            return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9 * expA;
        }

        public double Integrand7(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
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                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double term = 1.0 / r3;
            double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
            double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
            double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
            double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
            double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
            double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
            double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
            double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
            double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
            double expA = Math.Exp(-2.0 * alpha[9] * r34);

            return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9 * expA;
        }

        public double Integrand8(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
            double term = 1.0 / r4;
            double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
            double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
            double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
            double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
            double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
            double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
            double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
            double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
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            double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
            double expA = Math.Exp(-2.0 * alpha[9] * r34);

            return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
                exp6 * exp7 * exp8 * exp9 * expA;
        }

        public double Integrand9(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));

            if (r12 == 0)
                r12 = 0.01;

            double term = 1.0 / r12;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
            double mul3 = Math.Exp(-2.0 * alpha[3] * r12);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double IntegrandA(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
                Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));

            if (r13 == 0)
                r13 = 0.01;

            double term = 1.0 / r13;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r3);
            double mul3 = Math.Exp(-2.0 * alpha[3] * r13);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double IntegrandB(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
                Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));

            if (r14 == 0)
                r14 = 0.01;
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            double term = 1.0 / r14;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r4);
            double mul3 = Math.Exp(-2.0 * alpha[3] * r14);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double IntegrandC(double[] x, double[] alpha)
        {
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
                Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));

            if (r23 == 0)
                r23 = 0.01;

            double term = 1.0 / r23;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r2);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r3);
            double mul3 = Math.Exp(-2.0 * alpha[3] * r23);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double IntegrandD(double[] x, double[] alpha)
        {
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
                Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));

            if (r24 == 0)
                r24 = 0.01;

            double term = 1.0 / r24;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r2);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r4);
            double mul3 = Math.Exp(-2.0 * alpha[3] * r24);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double IntegrandE(double[] x, double[] alpha)
        {
            double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
            double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
            double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
                Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
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            if (r34 == 0)
                r34 = 0.01;

            double term = 1.0 / r34;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r3);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r4);
            double mul3 = Math.Exp(-2.0 * alpha[3] * r34);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double Energy(double[] alpha, double beta, int nSteps, int Z)
        {
            double[] lower = new double[12];
            double[] upper = new double[12];
            int[] steps = new int[12];

            lower[0] = lower[1] = lower[2] = lower[3] = lower[4] = lower[5] = 
0.001;

            lower[6] = lower[7] = lower[8] = lower[9] = lower[10] = lower[11] = 
0.001;

            upper[0] = upper[1] = upper[2] = upper[3] = upper[4] = upper[5] = 
10.0;

            upper[6] = upper[7] = upper[8] = upper[9] = upper[10] = upper[11] = 
10.0;

            steps[0] = steps[1] = steps[2] = steps[3] = steps[4] = steps[5] = 
nSteps;

            steps[6] = steps[7] = steps[8] = steps[9] = steps[10] = steps[11] = 
nSteps;

            N = Normalize(alpha, nSteps);

            this.Z = Z;

            integ1 = +integ.Integrate(lower, upper, alpha, Integrand1, 12, 
steps);

            integ2 = +integ.Integrate(lower, upper, alpha, Integrand2, 12, 
steps);

            integ3 = +integ.Integrate(lower, upper, alpha, Integrand3, 12, 
steps);

            integ4 = +integ.Integrate(lower, upper, alpha, Integrand4, 12, 
steps);

            integ5 = -integ.Integrate(lower, upper, alpha, Integrand5, 12, 
steps);

            integ6 = -integ.Integrate(lower, upper, alpha, Integrand6, 12, 
steps);

            integ7 = -integ.Integrate(lower, upper, alpha, Integrand7, 12, 
steps);

            integ8 = -integ.Integrate(lower, upper, alpha, Integrand8, 12, 
steps);

            integ9 = +integ.Integrate(lower, upper, alpha, Integrand9, 12, 
steps);
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            integA = +integ.Integrate(lower, upper, alpha, IntegrandA, 12, 
steps);

            integB = +integ.Integrate(lower, upper, alpha, IntegrandB, 12, 
steps);

            integC = +integ.Integrate(lower, upper, alpha, IntegrandC, 12, 
steps);

            integD = +integ.Integrate(lower, upper, alpha, IntegrandD, 12, 
steps);

            integE = +integ.Integrate(lower, upper, alpha, IntegrandE, 12, 
steps);

            return (integ1 + integ2 + integ3 + integ4 + integ5 + integ6 + integ7
                + integ8 + beta * (integ9 + integA + integB + integC)) / (N * N);
        }
    }
}


