
...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

using System;

namespace AtomicGroundStateEnergiesGaussian
{
 class BerylliumAtom
 {
 private Integration integ;
 private double N;
 private int Z;
 public double integ1, integ2, integ3;
 public double integ4, integ5, integ6;
 public double integ7, integ8, integ9;
 public double integA, integB, integC;
 public double integD, integE;
 public BerylliumAtom()
 {
 integ = new Integration();
 }

 public double Psi(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double exp1 = Math.Exp(-alpha[0] * r1);
 double exp2 = Math.Exp(-alpha[1] * r2);
 double exp3 = Math.Exp(-alpha[2] * r2);
 double exp4 = Math.Exp(-alpha[3] * r12);
 double exp5 = Math.Exp(-alpha[4] * r13);
 double exp6 = Math.Exp(-alpha[4] * r14);
 double exp7 = Math.Exp(-alpha[4] * r23);
 double exp8 = Math.Exp(-alpha[4] * r24);
 double exp9 = Math.Exp(-alpha[4] * r34);

 return exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9;
 }

 public double Psi2(double[] x, double[] alpha)

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 2
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

 {
 double psi = Psi(x, alpha);

 return psi * psi;
 }

 public double Normalize(double[] alpha, int nSteps)
 {
 double[] lower = new double[12];
 double[] upper = new double[12];
 int[] steps = new int[12];

 lower[0] = 0.001;
 lower[1] = 0.001;
 lower[2] = 0.001;
 lower[3] = 0.001;
 lower[4] = 0.001;
 lower[5] = 0.001;
 lower[6] = 0.001;
 lower[7] = 0.001;
 lower[8] = 0.001;
 lower[9] = 0.001;
 lower[10] = 0.001;
 lower[11] = 0.001;

 upper[0] = 10.0;
 upper[1] = 10.0;
 upper[2] = 10.0;
 upper[3] = 10.0;
 upper[4] = 10.0;
 upper[5] = 10.0;
 upper[6] = 10.0;
 upper[7] = 10.0;
 upper[8] = 10.0;
 upper[9] = 10.0;
 upper[10] = 10.0;
 upper[11] = 10.0;

 for (int i = 0; i < 12; i++)
 steps[i] = nSteps;

 double norm = Math.Sqrt(integ.Integrate(
 lower, upper, alpha, Psi2, 12, steps));

 return norm;
 }

 public double Integrand1(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 3
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double term = -2.0 * alpha[0] / r1 + alpha[0] * alpha[0];
 double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
 double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
 double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
 double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
 double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
 double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
 double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
 double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
 double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
 double expA = Math.Exp(-2.0 * alpha[9] * r34);

 return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9 * expA;
 }

 public double Integrand2(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double term = -2.0 * alpha[1] / r1 + alpha[1] * alpha[1];
 double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
 double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
 double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
 double exp4 = Math.Exp(-2.0 * alpha[3] * r4);

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 4
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

 double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
 double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
 double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
 double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
 double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
 double expA = Math.Exp(-2.0 * alpha[9] * r34);

 return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9 * expA;
 }

 public double Integrand3(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double term = -2.0 * alpha[2] / r1 + alpha[2] * alpha[2];
 double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
 double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
 double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
 double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
 double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
 double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
 double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
 double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
 double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
 double expA = Math.Exp(-2.0 * alpha[9] * r34);

 return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9 * expA;
 }

 public double Integrand4(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 5
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double term = -2.0 * alpha[3] / r1 + alpha[3] * alpha[3];
 double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
 double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
 double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
 double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
 double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
 double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
 double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
 double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
 double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
 double expA = Math.Exp(-2.0 * alpha[9] * r34);

 return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9 * expA;
 }

 public double Integrand5(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double term = 1.0 / r1;
 double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
 double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
 double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
 double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
 double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
 double exp6 = Math.Exp(-2.0 * alpha[5] * r13);

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 6
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

 double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
 double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
 double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
 double expA = Math.Exp(-2.0 * alpha[9] * r34);

 return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9 * expA;
 }

 public double Integrand6(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double term = 1.0 / r2;
 double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
 double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
 double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
 double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
 double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
 double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
 double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
 double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
 double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
 double expA = Math.Exp(-2.0 * alpha[9] * r34);

 return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9 * expA;
 }

 public double Integrand7(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 7
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double term = 1.0 / r3;
 double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
 double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
 double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
 double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
 double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
 double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
 double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
 double exp8 = Math.Exp(-2.0 * alpha[7] * r23);
 double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
 double expA = Math.Exp(-2.0 * alpha[9] * r34);

 return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9 * expA;
 }

 public double Integrand8(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));
 double term = 1.0 / r4;
 double exp1 = Math.Exp(-2.0 * alpha[0] * r1);
 double exp2 = Math.Exp(-2.0 * alpha[1] * r2);
 double exp3 = Math.Exp(-2.0 * alpha[2] * r3);
 double exp4 = Math.Exp(-2.0 * alpha[3] * r4);
 double exp5 = Math.Exp(-2.0 * alpha[4] * r12);
 double exp6 = Math.Exp(-2.0 * alpha[5] * r13);
 double exp7 = Math.Exp(-2.0 * alpha[6] * r14);
 double exp8 = Math.Exp(-2.0 * alpha[7] * r23);

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 8
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

 double exp9 = Math.Exp(-2.0 * alpha[8] * r24);
 double expA = Math.Exp(-2.0 * alpha[9] * r34);

 return N * N * term * exp1 * exp2 * exp3 * exp4 * exp5 *
 exp6 * exp7 * exp8 * exp9 * expA;
 }

 public double Integrand9(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));

 if (r12 == 0)
 r12 = 0.01;

 double term = 1.0 / r12;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
 double mul3 = Math.Exp(-2.0 * alpha[3] * r12);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double IntegrandA(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r13 = Math.Sqrt(Math.Pow(x[0] - x[6], 2.0) +
 Math.Pow(x[1] - x[7], 2.0) + Math.Pow(x[2] - x[8], 2.0));

 if (r13 == 0)
 r13 = 0.01;

 double term = 1.0 / r13;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r3);
 double mul3 = Math.Exp(-2.0 * alpha[3] * r13);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double IntegrandB(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r14 = Math.Sqrt(Math.Pow(x[0] - x[9], 2.0) +
 Math.Pow(x[1] - x[10], 2.0) + Math.Pow(x[2] - x[11], 2.0));

 if (r14 == 0)
 r14 = 0.01;

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 9
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

 double term = 1.0 / r14;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r4);
 double mul3 = Math.Exp(-2.0 * alpha[3] * r14);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double IntegrandC(double[] x, double[] alpha)
 {
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r23 = Math.Sqrt(Math.Pow(x[3] - x[6], 2.0) +
 Math.Pow(x[4] - x[7], 2.0) + Math.Pow(x[5] - x[8], 2.0));

 if (r23 == 0)
 r23 = 0.01;

 double term = 1.0 / r23;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r2);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r3);
 double mul3 = Math.Exp(-2.0 * alpha[3] * r23);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double IntegrandD(double[] x, double[] alpha)
 {
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r24 = Math.Sqrt(Math.Pow(x[3] - x[9], 2.0) +
 Math.Pow(x[4] - x[10], 2.0) + Math.Pow(x[5] - x[11], 2.0));

 if (r24 == 0)
 r24 = 0.01;

 double term = 1.0 / r24;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r2);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r4);
 double mul3 = Math.Exp(-2.0 * alpha[3] * r24);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double IntegrandE(double[] x, double[] alpha)
 {
 double r3 = Math.Sqrt(x[6] * x[6] + x[7] * x[7] + x[8] * x[8]);
 double r4 = Math.Sqrt(x[9] * x[9] + x[10] * x[10] + x[11] * x[11]);
 double r34 = Math.Sqrt(Math.Pow(x[6] - x[9], 2.0) +
 Math.Pow(x[7] - x[10], 2.0) + Math.Pow(x[8] - x[11], 2.0));

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 10
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

487

488

489

490

491

492
493
494
495
496
497

498

499

500

501

502

503

504

505

 if (r34 == 0)
 r34 = 0.01;

 double term = 1.0 / r34;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r3);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r4);
 double mul3 = Math.Exp(-2.0 * alpha[3] * r34);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double Energy(double[] alpha, double beta, int nSteps, int Z)
 {
 double[] lower = new double[12];
 double[] upper = new double[12];
 int[] steps = new int[12];

 lower[0] = lower[1] = lower[2] = lower[3] = lower[4] = lower[5] =
0.001;

 lower[6] = lower[7] = lower[8] = lower[9] = lower[10] = lower[11] =
0.001;

 upper[0] = upper[1] = upper[2] = upper[3] = upper[4] = upper[5] =
10.0;

 upper[6] = upper[7] = upper[8] = upper[9] = upper[10] = upper[11] =
10.0;

 steps[0] = steps[1] = steps[2] = steps[3] = steps[4] = steps[5] =
nSteps;

 steps[6] = steps[7] = steps[8] = steps[9] = steps[10] = steps[11] =
nSteps;

 N = Normalize(alpha, nSteps);

 this.Z = Z;

 integ1 = +integ.Integrate(lower, upper, alpha, Integrand1, 12,
steps);

 integ2 = +integ.Integrate(lower, upper, alpha, Integrand2, 12,
steps);

 integ3 = +integ.Integrate(lower, upper, alpha, Integrand3, 12,
steps);

 integ4 = +integ.Integrate(lower, upper, alpha, Integrand4, 12,
steps);

 integ5 = -integ.Integrate(lower, upper, alpha, Integrand5, 12,
steps);

 integ6 = -integ.Integrate(lower, upper, alpha, Integrand6, 12,
steps);

 integ7 = -integ.Integrate(lower, upper, alpha, Integrand7, 12,
steps);

 integ8 = -integ.Integrate(lower, upper, alpha, Integrand8, 12,
steps);

 integ9 = +integ.Integrate(lower, upper, alpha, Integrand9, 12,
steps);

...\repos\AtomicGroundStateEnergiesGaussian\BerylliumAtom.cs 11
506

507

508

509

510

511
512
513
514
515
516

 integA = +integ.Integrate(lower, upper, alpha, IntegrandA, 12,
steps);

 integB = +integ.Integrate(lower, upper, alpha, IntegrandB, 12,
steps);

 integC = +integ.Integrate(lower, upper, alpha, IntegrandC, 12,
steps);

 integD = +integ.Integrate(lower, upper, alpha, IntegrandD, 12,
steps);

 integE = +integ.Integrate(lower, upper, alpha, IntegrandE, 12,
steps);

 return (integ1 + integ2 + integ3 + integ4 + integ5 + integ6 + integ7
 + integ8 + beta * (integ9 + integA + integB + integC)) / (N * N);
 }
 }
}

