
...rce\repos\AtomicGroundStateEnergiesGaussian\HeliumAtom.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

using System;

namespace AtomicGroundStateEnergiesGaussian
{
 class HeliumAtom
 {
 private Integration integ;
 private double N;
 private int Z;
 public double integ1, integ2, integ3;
 public double integ4, integ5;

 public HeliumAtom()
 {
 integ = new Integration();
 }

 public double Psi(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double exp1 = Math.Exp(-alpha[0] * r1);
 double exp2 = Math.Exp(-alpha[1] * r2);
 double exp3 = Math.Exp(-alpha[2] * r12);

 return exp1 * exp2 * exp3;
 }

 public double Psi2(double[] x, double[] alpha)
 {
 double psi = Psi(x, alpha);

 return psi * psi;
 }

 public double Normalize(double[] alpha, int nSteps)
 {
 double[] lower = new double[6];
 double[] upper = new double[6];
 int[] steps = new int[6];

 lower[0] = 0.001;
 lower[1] = 0.001;
 lower[2] = 0.001;
 lower[3] = 0.001;
 lower[4] = 0.001;
 lower[5] = 0.001;

 upper[0] = 10.0;
 upper[1] = 10.0;

...rce\repos\AtomicGroundStateEnergiesGaussian\HeliumAtom.cs 2
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

 upper[2] = 10.0;
 upper[3] = 10.0;
 upper[4] = 10.0;
 upper[5] = 10.0;

 for (int i = 0; i < 6; i++)
 steps[i] = nSteps;

 double norm = Math.Sqrt(integ.Integrate(
 lower, upper, alpha, Psi2, 6, steps));

 return norm;
 }

 public double Integrand1(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double term = -2.0 * alpha[0] / r1 + alpha[0] * alpha[0];
 double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
 double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double Integrand2(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double term = -2.0 * alpha[1] / r1 + alpha[1] * alpha[1];
 double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
 double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double Integrand3(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double term = 1.0 / r1;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
 double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

...rce\repos\AtomicGroundStateEnergiesGaussian\HeliumAtom.cs 3
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148

149

150
151
152
153

 return N * N * Z * term * mul1 * mul2 * mul3;
 }

 public double Integrand4(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
 double term = 1.0 / r2;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
 double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

 return N * N * Z * term * mul1 * mul2 * mul3;
 }

 public double Integrand5(double[] x, double[] alpha)
 {
 double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
 double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
 double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
 Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));

 if (r12 == 0)
 r12 = 0.01;

 double term = 1.0 / r12;
 double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
 double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
 double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

 return N * N * term * mul1 * mul2 * mul3;
 }

 public double Energy(double[] alpha, double beta, int nSteps, int Z)
 {
 double[] lower = new double[6];
 double[] upper = new double[6];
 int[] steps = new int[6];

 lower[0] = lower[1] = lower[2] = lower[3] = lower[4] = lower[5] =
0.001;

 upper[0] = upper[1] = upper[2] = upper[3] = upper[4] = upper[5] =
10.0;

 steps[0] = steps[1] = steps[2] = steps[3] = steps[4] = steps[5] =
nSteps;

 N = Math.Sqrt(integ.Integrate(
 lower, upper, alpha, Psi2, 6, steps));

...rce\repos\AtomicGroundStateEnergiesGaussian\HeliumAtom.cs 4
154
155
156
157
158
159
160
161
162
163
164
165

 this.Z = Z;

 integ1 = +integ.Integrate(lower, upper, alpha, Integrand1, 6, steps);
 integ2 = +integ.Integrate(lower, upper, alpha, Integrand2, 6, steps);
 integ3 = -integ.Integrate(lower, upper, alpha, Integrand3, 6, steps);
 integ4 = -integ.Integrate(lower, upper, alpha, Integrand4, 6, steps);
 integ5 = +integ.Integrate(lower, upper, alpha, Integrand5, 6, steps);

 return (integ1 + integ2 + integ3 + integ4 + beta * integ5) / (N * N);
 }
 }
}

