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using System;

namespace AtomicGroundStateEnergiesGaussian
{
    class HeliumAtom
    {
        private Integration integ;
        private double N;
        private int Z;
        public double integ1, integ2, integ3;
        public double integ4, integ5;

        public HeliumAtom()
        {
            integ = new Integration();
        }

        public double Psi(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double exp1 = Math.Exp(-alpha[0] * r1);
            double exp2 = Math.Exp(-alpha[1] * r2);
            double exp3 = Math.Exp(-alpha[2] * r12);

            return exp1 * exp2 * exp3;
        }

        public double Psi2(double[] x, double[] alpha)
        {
            double psi = Psi(x, alpha);

            return psi * psi;
        }

        public double Normalize(double[] alpha, int nSteps)
        {
            double[] lower = new double[6];
            double[] upper = new double[6];
            int[] steps = new int[6];

            lower[0] = 0.001;
            lower[1] = 0.001;
            lower[2] = 0.001;
            lower[3] = 0.001;
            lower[4] = 0.001;
            lower[5] = 0.001;

            upper[0] = 10.0;
            upper[1] = 10.0;
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            upper[2] = 10.0;
            upper[3] = 10.0;
            upper[4] = 10.0;
            upper[5] = 10.0;

            for (int i = 0; i < 6; i++)
                steps[i] = nSteps;

            double norm = Math.Sqrt(integ.Integrate(
                lower, upper, alpha, Psi2, 6, steps));

            return norm;
        }

        public double Integrand1(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double term = -2.0 * alpha[0] / r1 + alpha[0] * alpha[0];
            double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
            double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double Integrand2(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double term = -2.0 * alpha[1] / r1 + alpha[1] * alpha[1];
            double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
            double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double Integrand3(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double term = 1.0 / r1;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
            double mul3 = Math.Exp(-2.0 * alpha[2] * r12);
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            return N * N * Z * term * mul1 * mul2 * mul3;
        }

        public double Integrand4(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));
            double term = 1.0 / r2;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
            double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

            return N * N * Z * term * mul1 * mul2 * mul3;
        }

        public double Integrand5(double[] x, double[] alpha)
        {
            double r1 = Math.Sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]);
            double r2 = Math.Sqrt(x[3] * x[3] + x[4] * x[4] + x[5] * x[5]);
            double r12 = Math.Sqrt(Math.Pow(x[0] - x[3], 2.0) +
                Math.Pow(x[1] - x[4], 2.0) + Math.Pow(x[2] - x[5], 2.0));

            if (r12 == 0)
                r12 = 0.01;

            double term = 1.0 / r12;
            double mul1 = Math.Exp(-2.0 * alpha[0] * r1);
            double mul2 = Math.Exp(-2.0 * alpha[1] * r2);
            double mul3 = Math.Exp(-2.0 * alpha[2] * r12);

            return N * N * term * mul1 * mul2 * mul3;
        }

        public double Energy(double[] alpha, double beta, int nSteps, int Z)
        {
            double[] lower = new double[6];
            double[] upper = new double[6];
            int[] steps = new int[6];

            lower[0] = lower[1] = lower[2] = lower[3] = lower[4] = lower[5] = 
0.001;

            upper[0] = upper[1] = upper[2] = upper[3] = upper[4] = upper[5] = 
10.0;

            steps[0] = steps[1] = steps[2] = steps[3] = steps[4] = steps[5] = 
nSteps;

            N = Math.Sqrt(integ.Integrate(
                lower, upper, alpha, Psi2, 6, steps));
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            this.Z = Z;

            integ1 = +integ.Integrate(lower, upper, alpha, Integrand1, 6, steps);
            integ2 = +integ.Integrate(lower, upper, alpha, Integrand2, 6, steps);
            integ3 = -integ.Integrate(lower, upper, alpha, Integrand3, 6, steps);
            integ4 = -integ.Integrate(lower, upper, alpha, Integrand4, 6, steps);
            integ5 = +integ.Integrate(lower, upper, alpha, Integrand5, 6, steps);

            return (integ1 + integ2 + integ3 + integ4 + beta * integ5) / (N * N);
        }
    }
}


