Approximate Solution of the Schrodinger Equation for the Helium Atom by James Pate Williams, Jr.

The Schrodinger equation for the helium atom is:

$$-\frac{h^2}{8\pi^2 m}(\nabla_1^2 \psi + \nabla_2^2 \psi) - \frac{Ze^2}{4\pi\epsilon_0} \left(\frac{1}{r_1} + \frac{1}{r_2}\right) \psi + \frac{e^2}{4\pi\epsilon_0 r_{12}} \psi = E\psi$$

Rewriting the equation in atomic units we obtain [1]:

$$\begin{split} -\frac{1}{2}(\nabla_1^2\psi + \nabla_2^2\psi) - Z\left(\frac{1}{r_1} + \frac{1}{r_2}\right)\psi + \frac{1}{r_{12}}\psi &= E\psi \\ \psi &= \phi_1(r_1)\phi_2(r_2) \\ \phi_i(r_i) &= R_{10}(r_i)Y_{00}(\vartheta_i, \varphi_i) = 2b_i^{3/2}e^{-b_ir_i}\frac{1}{2\sqrt{\pi}} = \frac{1}{\sqrt{\pi}}b_i^{3/2}e^{-b_ir_i} \\ r_1 &= [x_1^2 + y_1^2 + z_1^2]^{1/2} \end{split}$$

The radial part of the Laplacian operator is as illustrated below:

$$\nabla_1^2 = \frac{1}{r_1^2} \frac{d}{dr_1} \left[r_1^2 \frac{d}{dr_1} \right]$$

We use the following formulas to compute the kinetic and potential energies:

$$KE = \frac{1}{2}(\zeta_1^2 + \zeta_2^2)$$

$$PE = -Z(\zeta_1 + \zeta_2)$$

Plugging in the following values:

$$Z = 2$$
, $\zeta_1 = 2$, $\zeta_2 = 2$

Yields a kinetic energy, KE, equal 4 and a potential energy, PE, equal -8. Therefore, the total energy neglecting the Coulomb integral is -4 Hartree in atomic units.

The electron-electron repulsion (Coulomb) integral is calculated using the following equations [2] and the two-dimensional integral evaluating function, TRICUB, which is found in [3]:

$$\frac{1}{r_{12}} = \frac{1}{r_{>}} \sum_{l=0}^{\infty} \left(\frac{r_{<}}{r_{>}}\right)^{l}$$

$$\frac{1}{r_{12}} = \frac{1}{r_{1}} \sum_{l=0}^{\infty} \left(\frac{r_{2}}{r_{1}}\right)^{l} \forall r_{1} > r_{2}$$

$$\frac{1}{r_{12}} = \frac{1}{r_{2}} \sum_{l=0}^{\infty} \left(\frac{r_{1}}{r_{2}}\right)^{l} \forall r_{2} > r_{1}$$

$$\int\limits_{0}^{\infty}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}\int\limits_{0}^{\infty}\int\limits_{0}^{\pi}\int\limits_{0}^{2\pi}\phi_{1}(r_{1})\phi_{2}(r_{2})\frac{1}{r_{12}}\phi_{1}(r_{1})\phi_{2}(r_{2})r_{1}^{2}r_{2}^{2}\sin\vartheta_{1}\sin\vartheta_{2}\,dr_{1}dr_{2}d\vartheta_{1}d\vartheta_{2}d\varphi_{1}d\varphi_{2}=J(b_{1},b_{2})$$

$$J(b_1, b_2) = 16\pi^2 \int_0^\infty \int_0^\infty \frac{1}{r_>} \sum_{l=0}^\infty \left(\frac{r_<}{r_>}\right)^l \phi_1(r_1) \phi_2(r_2) \phi_1(r_1) \phi_2(r_2) r_1^2 r_2^2 dr_1 dr_2$$

We compute the zeta derivatives using central differences [4]:

$$\frac{df(\zeta,r)}{d\zeta} = \frac{f(\zeta+h,r) - f(\zeta-h,r)}{2h}$$
$$\frac{d^2f(\zeta,r)}{d\zeta^2} = \frac{f(\zeta-h,r) - 2f(\zeta,r) + f(\zeta+h,r)}{2h}$$

We use three different methods to minimize the energy:

- 1. Evolutionary hill-climber one
- 2. Evolutionary hill-climber two
- 3. Simulated annealing

The user interface of our computer program is illustrated as follows:

Menu

- 1 First Rough Approximation
- 2 NUMAL's Praxis Function
- 3 Evolutionary Hill-Climber One
- 4 Evolutionary Hill-Climber Two
- 5 Simulated Annealing
- 6 Exit

Choose an Option: 1 Choose an Option: 2 Choose an Option: 3 Generations: 5000 Population: 4 Choose an Option: 4

Choose an Option: 4
Generations: 5000
Population: 4

Choose an Option: 5

m: 100 n: 20

m: 100 n: 20

Choose an Option: 6

The menu item 1 result was:

```
Helium atom atomic number Z = 2
Experimental ground state energy (au) = -2.90339
Experimental ground state energy (eV) = -79.0052
First Approximation Results:
zeta 1 = 2
               zeta 2 = 2
Electron-electron repulsion energy (au) = 1.24999
Electron-electron repulsion energy (eV) = 34.014
Kinetic Energy (au) = 4
Kinetic Energy (eV) = 108.845
Potential energy (au) = -8
Potential energy (eV) = -217.691
Total energy (au) = -2.75001
Total energy (eV) = -74.8313
Derivative 1 in atomic units = 0
Derivative 2 in atomic units = 0
% Error = 5.28302
Runtime in milliseconds = 54
```

The PRAXIS function found in [3] computation was:

```
NUMAL's Praxis Results:

zeta 1 = 1.68752 zeta 2 = 1.68753

Electron-electron repulsion energy (au) = 1.0547

Electron-electron repulsion energy (eV) = 28.6999

Kinetic Energy (au) = 2.84774

Kinetic Energy (eV) = 77.4908

Potential energy (au) = -6.7501

Potential energy (eV) = -183.679

Total energy (au) = -2.84766

Total energy (eV) = -77.4885

Derivative 1 in atomic units = -0.312473

Derivative 2 in atomic units = -0.312461

% Error = 1.91972

Runtime in milliseconds = 3069
```

The first evolutionary hill-climber calculation was:

```
Evolutionary Hill-Climber One Results:
Generations: 5000
Population: 4
zeta 1 = 1.68609
                   zeta 2 = 1.68432
Electron-electron repulsion energy (au) = 1.05325
Electron-electron repulsion energy (eV) = 28.6604
Kinetic Energy (au) = 2.83991
Kinetic Energy (eV) = 77.2776
Potential energy (au) = -6.74081
Potential energy (eV) = -183.426
Total energy (au) = -2.84765
Total energy (eV) = -77.4883
Derivative 1 in atomic units = -0.313913
Derivative 2 in atomic units = -0.315683
% Error = 1.91992
Runtime in milliseconds = 72868
```

The second evolutionary hill-climber found the results shown below:

```
Evolutionary Hill-Climber Two Results:
Generations: 5000
Population: 4
zeta 1 = 1.70135
                  zeta 2 = 1.71789
Electron-electron repulsion energy (au) = 1.06848
Electron-electron repulsion energy (eV) = 29.0748
Kinetic Energy (au) = 2.92286
Kinetic Energy (eV) = 79.5348
Potential energy (au) = -6.83847
Potential energy (eV) = -186.084
Total energy (au) = -2.84732
Total energy (eV) = -77.4795
Derivative 1 in atomic units = -0.298654
Derivative 2 in atomic units = -0.282113
% Error = 1.93111
Runtime in milliseconds = 333291
```

Finally, the simulated annealing algorithm discovered the energy values:

```
Simulated Annealing Results:

zeta 1 = 1.9118 zeta 2 = 1.85144

Electron-electron repulsion energy (au) = 1.17564

Electron-electron repulsion energy (eV) = 31.9908

Kinetic Energy (au) = 3.5414

Kinetic Energy (eV) = 96.3662

Potential energy (au) = -7.52647

Potential energy (eV) = -204.805

Total energy (au) = -2.80943

Total energy (eV) = -76.4483

Derivative 1 in atomic units = -0.0881985

Derivative 2 in atomic units = -0.148564

% Error = 3.23627

Runtime in milliseconds = 129881
```

References

- [1] L. I. Schiff, Quantum Mechanics Third Edition, New York: McGraw-Hill Book Company, 1968.
- [2] J. D. Jackson, Classical Electrodynamics Second Edition, New York: John Wiley and Sons, 1975.
- [3] H. T. Lau, A Numerical Library in C for Scientists and Engineers, CRC Press: Boca Raton, 1995.
- [4] S. D. d. B. C. Conte, Elementary Numerical Analysis Third Edition, New York: McGraw-Hill Book Company, 1980.