The Center of Mass of a Lamina Reproductions by James Pate Williams, Jr.
Applications Of Double Integrals (Illustrated w/ Examples!) (calcworkshop.com)
3.7: Moments and Centers of Mass - Mathematics LibreTexts

Let the density function be given by:

$$
\rho(x, y)=\frac{1}{1+y}
$$

The moment of mass with respect to x is:

$$
M_{x}=\int_{0}^{1} \int_{0}^{1} \frac{y}{1+y} d x d y
$$

Similarly, the moment of mass with respect to y is:

$$
M_{y}=\int_{0}^{1} \int_{0}^{1} \frac{x}{1+y} d x d y
$$

The mass is calculated using the formula:

$$
M=\int_{0}^{1} \int_{0}^{1} \frac{1}{1+y} d x d y
$$

Using a computer two-dimensional cubature application, we get the following results:
$a=0$
$b=1$
Mass $=0.693147$
Mass Moment x $=0.346574$
Mass Moment $y=0.306853$
Center of Mass $x=0.5$
Center of Mass $y=0.442695$

Let the mass density be:

$$
\rho(x, y)=k\left(x^{2}+y^{2}\right)
$$

And the moments:

$$
\begin{aligned}
& M_{x}=k \int_{0}^{2} \int_{0}^{1} y\left(x^{2}+y^{2}\right) d x d y \\
& M_{y}=k \int_{0}^{2} \int_{0}^{1} x\left(x^{2}+y^{2}\right) d x d y
\end{aligned}
$$

$$
M=k \int_{0}^{2} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x d y
$$

Choose $\mathrm{k}=1$ then we calculate:
k = 1
Mass $2=0.666667$
Mass Moment x $2=0.416667$
Mass Moment y $2=0.416667$
Center of Mass x $2=0.625$
Center of Mass y $2=0.625$

