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The Hamiltonian is defined by the equation:
H=T+V
Where T is the kinetic energy and V is the potential energy. The classical Hamiltonian for the
harmonic oscillator is given by:
2 ka
P +
2m 2

where p is the linear momentum and k is Hooke’s constant. Introducing the quantum
mechanical momentum operator yields the Hamiltonian for the quantum mechanical
harmonic oscillator:
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The time independent Schrodinger equation is:
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Now perform the transformation:
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Now we solve the previous equation using Frobenius’ method using a special infinite power
series:

p(x) =x° Z a,x"
n=0

do i

—= ) (n+s)ax"*s1

dx e
d?o i
— =) (n+s)(n+s—1Da,x"*s2

2

dx e

Z(n +s)(n+s—1a,x""5"2 -2 Z(n +8)a,x"+(1—-1) Z a,x"*ts =0
n=0 n=0 n=0

—2sayx® + (1 —1a,x® =
Assuming the series coefficients and variables are nonzero we have:
A==-254+1=1,fors=0n=0
A=2(s+1)+1=3fors=0n=1
A=—(G+2)s+1)+2(s+2)+1=0+4+1=5fors=0,n=2
A=—(+4)(G+3)+2(s+3)+1=7fors=0,n=3
A=—(+4)(+3)+2(s+4)+1=9fors=0n=4

So, we make the conjecture:
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H is the physicist Hermite polynomial. Remember the equation:
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The total energy is:
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Next, we introduce the ladder operations also known as annihilation and creation
operators. These two operators are self-adjoint, Q is the position operator and P is the

momentum operator:
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We introduce a new operator:
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The following commutator vanishes:
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Annihilation and creation:
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