Solution of the Time Independent Schrödinger Equation for the Quantum Mechanical Harmonic Oscillator © Thursday, May 16, 2024, by James Pate Williams, Jr.

The Hamiltonian is defined by the equation:

$$
H=T+V
$$

Where T is the kinetic energy and V is the potential energy. The classical Hamiltonian for the harmonic oscillator is given by:

$$
H=\frac{p^{2}}{2 m}+\frac{k x^{2}}{2}
$$

where p is the linear momentum and k is Hooke's constant. Introducing the quantum mechanical momentum operator yields the Hamiltonian for the quantum mechanical harmonic oscillator:

$$
H=-\frac{h^{2}}{8 \pi^{2} m} \frac{d^{2}}{d z^{2}}+\frac{m \omega^{2} z^{2}}{2}
$$

The time independent Schrödinger equation is:

$$
-\frac{h^{2}}{8 \pi^{2} m} \frac{d^{2} \Psi}{d z^{2}}+\frac{m \omega^{2} z^{2}}{2} \Psi=E \Psi
$$

Now perform the transformation:

$$
\begin{gathered}
x=\alpha z, \alpha=\sqrt{\frac{4 \pi^{2} m \omega}{h^{2}}}, \lambda=\frac{4 \pi E}{h \omega}, z=\frac{x}{\alpha}, \psi(x)=\Psi\left(\frac{z}{\alpha}\right) \\
\frac{d \psi}{d x}=\frac{d z}{d x} \frac{d \Psi}{d z}=\frac{1}{\alpha} \frac{d \Psi}{d z} \\
\frac{d^{2} \psi}{d x^{2}}=\frac{d^{2} z}{d x^{2}} \frac{d \Psi}{d z}+\frac{1}{\alpha^{2}} \frac{d^{2} \Psi}{d z^{2}}=\frac{1}{\alpha^{2}} \frac{d^{2} \Psi}{d z^{2}} \\
\frac{d^{2} \Psi}{d x^{2}}+\left(\lambda-x^{2}\right) \psi=0 \\
\varphi(x)=e^{-x^{2} / 2} \psi(x) \\
\psi(x)=e^{-x^{2} / 2} \varphi(x) \\
\frac{d \psi}{d x}=e^{-x^{2} / 2} \frac{d \varphi}{d x}-x e^{-x^{2} / 2} \varphi
\end{gathered}
$$

$$
\begin{gathered}
e^{-x^{2} / 2} \frac{d^{2} \varphi}{d x^{2}}-2 x e^{-x^{2} / 2} \frac{d \varphi}{d x}-e^{-x^{2} / 2} \varphi+x^{2} e^{-x^{2} / 2} \varphi-x^{2} e^{-x^{2} / 2} \varphi+\lambda e^{-x^{2} / 2} \varphi=0 \\
\frac{d^{2} \varphi}{d x^{2}}-2 x \frac{d \varphi}{d x}+(\lambda-1) \varphi=0
\end{gathered}
$$

Now we solve the previous equation using Frobenius' method using a special infinite power series:

$$
\begin{gathered}
\varphi(x)=x^{s} \sum_{n=0}^{\infty} a_{n} x^{n} \\
\frac{d \varphi}{d x}=\sum_{n=0}^{\infty}(n+s) a_{n} x^{n+s-1} \\
\frac{d^{2} \varphi}{d x^{2}}=\sum_{n=0}^{\infty}(n+s)(n+s-1) a_{n} x^{n+s-2} \\
\sum_{n=0}^{\infty}(n+s)(n+s-1) a_{n} x^{n+s-2}-2 \sum_{n=0}^{\infty}(n+s) a_{n} x^{n+s}+(\lambda-1) \sum_{n=0}^{\infty} a_{n} x^{n+s}=0 \\
-2 s a_{0} x^{s}+(\lambda-1) a_{n} x^{s}=0
\end{gathered}
$$

Assuming the series coefficients and variables are nonzero we have:

$$
\begin{gathered}
\lambda=-2 s+1=1, \text { for } s=0, n=0 \\
\lambda=2(s+1)+1=3 \text { for } s=0, n=1 \\
\lambda=-(s+2)(s+1)+2(s+2)+1=0+4+1=5 \text { for } s=0, n=2 \\
\lambda=-(s+4)(s+3)+2(s+3)+1=7 \text { for } s=0, n=3 \\
\lambda=-(s+4)(s+3)+2(s+4)+1=9 \text { for } s=0, n=4
\end{gathered}
$$

So, we make the conjecture:

$$
\lambda=2 n+1
$$

And thus

$$
\frac{d^{2} \mathrm{H}_{n}}{d x^{2}}-2 x \frac{d \mathrm{H}_{n}}{d x}+2 n \mathrm{H}_{n}=0
$$

H is the physicist Hermite polynomial. Remember the equation:

$$
\lambda=\frac{4 \pi E}{h \omega}
$$

The total energy is:

$$
E=\frac{\lambda h \omega}{4 \pi}=\frac{(2 n+1) h \omega}{4 \pi}=\left(n+\frac{1}{2}\right) \frac{h \omega}{2 \pi}
$$

[1]
Next, we introduce the ladder operations also known as annihilation and creation operators. These two operators are self-adjoint, Q is the position operator and P is the momentum operator:

$$
\begin{aligned}
& a=\frac{1}{\sqrt{2}}\left(\sqrt{\frac{2 \pi m \omega}{h}} Q+\frac{i}{\sqrt{2 \pi m \omega h}} P\right) \\
& \hat{a}=\frac{1}{\sqrt{2}}\left(\sqrt{\frac{2 \pi m \omega}{h}} Q-\frac{i}{\sqrt{2 \pi m \omega h}} P\right)
\end{aligned}
$$

We introduce a new operator:

$$
\begin{gathered}
N=\hat{a} a \\
N=\frac{2 \pi m \omega}{2 h} Q^{2}+\frac{2 \pi}{\omega m h}-\frac{2 \pi i}{2 h}(P Q-Q P) \\
N=\frac{2 \pi I}{\omega h} H-\frac{I}{2} \\
a \hat{a}=\frac{2 \pi I}{\omega h} H+\frac{I}{2}
\end{gathered}
$$

The position and momentum commutator vanishes:

$$
[a, \hat{a}]=a \hat{a}-\hat{a} a=0
$$

Annihilation and creation:

$$
a \phi_{n}=\sqrt{n} \phi_{n-1}
$$

[2]

References

[1] Baring, "Hermite Polynomials," Rice University, [Online]. Available: https://www.ruf.rice.edu/~baring/phys516/phys516_2021_lec_041321.pdf. [Accessed 16 May 2024].
[2] A. Boehm, "Algebra of the Harmonic Oscillator," in Quantum Mechanics, New York, Springer-Verlag, 1979, pp. 15-20.

