C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1 // NumDifInt.c (c) June 5, 2024 by James Pate Williams, Jr.

2 // Exmaples and Exercises from Chapter 7 of "Numerical
3 // Analysis: An Algorithmic Approach™ (c) 1980 S. D. Conte and Carl
4 // de Boor Chapter 7 Differentiation and Integration
5 // Also, we have used code from "A Numerical Library in C
6 // for Scientists and Engineers" (c) 1994 by H. T. Lau, PhD
7
8 #include <direct.h>
9 #include <float.h>

10 #include <math.h>

11 #include <stdio.h>

12 #include <stdlib.h>

13 #include <string.h>

14

15 const char out_filename[22] = "\\out_NumDifInt.txt";
16

17 double fl(double x)

18 {

19 return exp(x);

20 }

21

22 double f2(double x)

23 {

24 return exp(-x);

25 }

26

27 double FDfDx(

28 double a,

29 double h,

30 double (*fx)(double))

31 {

32 // forward difference Equation (7.8)

33 return (fx(a + h) - fx(a)) / h;

34}

35

36 double cDfDx(

37 double a,

38 double h,

39 double (*fx)(double))

40 {

41 // central difference Equation (7.8)

42 return (fx(a + h) - fx(a - h)) / (2 * h);

43 '}

44

45 double iDfDx(

46 double a,

47 double h,

48 double (*fx)(double))

49 {

50 // interpolation difference Equation (7.10)

51 return (-3.0 * fx(a) + 4.0 * fx(a + h)

52 - fx(a - 2.0 * h)) / (2 * h);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

53}

54

55 double cD2fDx2(

56 double a,

57 double h,

58 double (*fx)(double))

59 {

60 // central difference Equation (7.14)
61 return (fx(a - h) - 2 * fx(a) + fx(a + h)) / (h * h);
62 }

63

64 long double Interpolation(

65 long double x0,

66 long double x1,

67 long double (*f)(long double))

68 {

69 return (f(x0) - f(x1)) / (x@ - x1);

70 }

71

72 long double dlogxdxl(double x)

73 {

74 return 1.0 / x;

75 }

76

77 void Exercise7_1 5(FILE* out file, int nmax)
78 {

79 long double p = 0.0, x0 = 0.0, x1 = 0.0;
80 long double fxp = dlogxdxl(2.0L);

81 long double an = 0.0L;

82 int n;

83

84 for (n = 1; n <= nmax; n++)

85 {

86 p = pow(2.0, -n);

87 X0 = 2.0 - p;

88 X1 = 2.0 + p;

89 an = Interpolation(x@, x1, logl);
90 }

91

92 fprintf_s(out file, "f(x) = In(x)\n");
93 fprintf_s(out file, "f'(2) = %12.101f\n", fxp);
94 fprintf_s(out file, "a[%21d] = %12.10Lf\n\n", nmax, an);
95 }

96

97 double RectangleRule(

98 double a,

99 double b,

100 double (*f)(double))

101 {

102 return (b - a) * f(a);

103 }

104



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

105 double MidPointRule(

106 double a,

107 double b,

108 double (*f)(double))

109 {

110 return (b - a) * f((a + b) / 2.0);
111 }

112

113 double TrapezoidalRule(

114 double a,

115 double b,

116 double (*f)(double))

117 |

118 return 0.5 * (b - a) * (f(a) + f(b));
119 }

120

121 double SimpsonsRule(

122 double a,

123 double b,

124 double (*f)(double))

125 {

126 return (b - a) /6.0 * (f(a) + 4.0 * £(0.5 * (a + b)) + f(b));
127 }

128

129 double CorrectedTrapezoidalRule(

130 double a,

131 double b,

132 double (*f)(double),

133 double (*g)(double))

134 {

135 double delta = b - a;

136

137 return (delta / 2.0) * (f(a) + f(b)) +
138 (delta * delta / 12.9) * (g(a) - g(b));
139 }

140

141 double NegSqrExp(double x)

142 {

143 return exp(-x * x);

144 }

145

146 double dExp2dx(double x)

147 {

148 return -2.0 * x * exp(-x * x);

149 }

150

151

152 // Begin functions from "A Numerical Library in C for"
153 // Scientists and Engineers" (c) 1994 by H. T. Lau, PhD
154

155 void system_error(char error_message[])

156 {



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

}

printf("%s", error_message);
exit(-1);

double** allocate_real _matrix(int 1lr, int ur, int lc, int uc)

{

}

/* Allocates a real matrix of range [lr..ur][lc..uc]. */

void system_error(char*);
int i;
double** p;

p = (double**)malloc((unsigned)(ur - 1lr + 1) * sizeof(double*));
if (!p) system_error("Failure in allocate_real matrix().");
p -=1r;

for (i = 1r; i <= ur; i++) {
p[i] = (double*)malloc((unsigned)(uc - lc + 1) * sizeof(double));
if (!p[i]) system_error("Failure in allocate_real matrix().");
p[i] -= lc;

}

return p;

double* allocate_real_vector(int 1, int u)

{

}

/* Allocates a real vector of range [l..u]. */
double* p;
p = (double*)malloc((unsigned)(u - 1 + 1) * sizeof(double));

if (!p) system_error("Failure in allocate_real vector().");
return p - 1;

void free_real_matrix(double** m, int 1r, int ur, int 1c)

{

}

/* Frees a real matrix of range [1lr..ur][lc..uc]. */
int i;

for (i = ur; i >= 1r; i--) free((char*)(m[i] + 1lc));
free((char*)(m + 1r));

void free_real_vector(double* v, int 1)

{

/* Frees a real vector of range [l..u]. */

free((char*)(v + 1));



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

209 double opfx(

210 char name[],

211 double alpha,

212 double beta,

213 double x,

214 int n)

215 {

216 double aln = 1, a2n =1, a3n = 1, a4n = 1;
217 double fo = 1, f1 = x, f2 = 1;

218

219 if (strcmp(name, "Laguerre") == 0)

220 fl = -x +1;

221

222 else if (strcmp(name, "Gegenbauer") == 0)
223 {

224 if (alpha != @)

225 f1 = 2 * alpha * x;

226 }

227

228 else if (strcmp(name, "Generalized Laguerre") == 0)
229 fl = alpha + 1 - x;

230

231 else if (strcmp(name, "Jacobi") == @)

232 fl = 0.5 * (alpha - beta + (alpha + beta + 2) * x);
233

234 for (int k = 2; k <= n; k++)

235 {

236 if (strcmp(name, "Chebyshev") == 0)
237 {

238 aln = 1.0;

239 a2n = 0.0;

240 a3n = 2.0;

241 adn = 1.0;

242 }

243

244 else if (strcmp(name, "Laguerre") == 0)
245 {

246 aln = k - 1.0 + 1.0;

247 a2n =2 * (k - 1.0) + 1.0;

248 a3n = -1.0;

249 adn = k - 1.0;

250 }

251

252 else if (strcmp(name, "Legendre") == 0)
253 {

254 aln = k + 1.0 - 1.0;

255 a2n = 0.0;

256 a3n = 2.0 * (k - 1.0) + 1.0;

257 adn = k - 1.0;

258 }

259

260 else if (strcmp(name, "Gegenbauer") == Q)



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

}

if (alpha != @)

aln = k - 1.0 + 2.0;

a2n = 0;

a3n = 2 * (k - 1.0 + alpha);

adn = k - 1.0 + 2.0 * alpha - 1.0;

aln = 1.0;

a2n = 0.0;

a3n = 2.0;

adn = 1.0;

(strcmp(name, "Generalized Laguerre") == 0)

= —1;

(strcmp(name, "Jacobi") == 0)

le t

0 && strcmp(name, "Gegenbauer™)

k - 1.0 + 1.0;
2 * (k - 1.0) + alpha + 1.0;

k - 1.0 + alpha;

2.0 * (k - 1.0) + alpha

2.0 * k * (k + alpha + beta)
alpha * alpha - beta * beta;
(t+1.0) *t * (t +2.9);
=2 * (k - 1.0 + alpha) * (k -

((a2n + a3n * x) * f1 - a4n * f0)

f2 =2*f2 / n;

{
{
}
else
{
}
¥
else if
{
aln
az2n
a3n
adn
¥
else if
{
doub
aln
az2n
a3n
adn
¥
f2 =
fo = f1;
fl = f2;
}
if (alpha ==
return f2;

double opgx(char name[], double x, int n)

{

double fo = 1, f1

=x, f2 = 1;

if (strcmp(name, "Laguerre") != @)

beta;

T

.0 + beta) * (t + 2.09);

aln;



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

313 {

314 if (x == 1.0)

315 X -= 0.0000001;

316

317 else if (x == -1.0)

318 X += 0.0000001;

319 }

320

321 double gox = 1.0, gix = 1.0, g2x = 1.0;
322

323 if (strcmp(name, "Chebyshev") == 0)
324 {

325 gox = n;

326 glx = -n * x;

327 g2x = 1.0 - x * x;

328 }

329

330 else if (strcmp(name, "Laguerre") == 0)
331 {

332 gox = -n;

333 glx = n;

334 g2X = X;

335 }

336

337 else if (strcmp(name, "Legendre") == 0)
338 {

339 gox = n;

340 glx = -n * x;

341 g2x = 1.0 - x * x;

342 }

343

344 f0 = opfx(name, 0.0, 0.0, x, n - 1);
345 f1 = opfx(name, 0.0, 0.0, x, n);

346 f2 = (glx * f1 + gox * f0) / g2x;
347

348 return f2;

349 }

350

351 double wf(

352 char name[],

353 double alpha,

354 double beta,

355 double x,

356 int n)

357 {

358 double wx = 0.0;

359

360 if (strcmp(name, "Gegenbauer") == @)
361 wx = pow(l - x * x, alpha - 0.5);
362

363 else if (strcmp(name, "Generalized Laguerre") == 0)

364 wx = exp(-x) * pow(x, alpha);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

365

366 else if (strcmp(name, "Jacobi") == @)

367 wx = pow(l - x, alpha) * pow(1l + x, beta);

368

369 return wx * opfx(name, alpha, beta, x, n);

370 }

371

372 void dupvec(int 1, int u, int shift, double a[], double b[])
373 {

374 for (; 1 <= u; 1++) a[l] = b[1l + shift];

375 }

376

377 void rotcol(int 1, int u, int i, int j, double** a, double c, double s)
378 {

379 double x, y;

380

381 for (; 1 <= u; 1++)

382 {

383 x = a[l][i];

384 y = alll[il];

385 a[ll[i] = x * c +y * s;

386 a[ll[i] =y * c - x * s

387 }

388 }

389

390 int grivalsymtri(double d[], double bb[], int n, double em[])
391 {

392 int i, i1, low, oldlow, nl, count, max;

393 double bbtol, bbmax, bbi, bbnl, machtol, dn, delta, f, num, shift, g, h,
394 t, p, r, s, c, oldg;

395

396 t = em[2] * em[1];

397 bbtol = t * t;

398 machtol = em[@] * em[1];

399 max = (int)em[4];

400 bbmax = 0.0;

401 count = 0;

402 oldlow = n;

403 nl =n - 1;

404 while (n > @)

405 {

406 i=n;

407 do

408 {

409 low = i;

410 i--;

411 } while ((i >= 1) ? (bb[i] > bbtol ? 1 : @) : 9);
412 if (low > 1)

413 if (bb[low - 1] > bbmax) bbmax = bb[low - 1];
414 if (low == n)

415 n = nl;

416 else



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

{

1

d[n1] - dn;

b[ni];

(delta) < machtol)
sqrt(bbnl);

2.0 / delta;
= bbnl * f;

r=-num / (sqrt(num * £ + 1.0) + 1.9);

dn = d[n

delta =

bbnl = b

if (fabs
r =

else

{
f =
num

}

if (low

{
d[n]
d[n1
n -=

}

else

{
coun
if (
if (
{
}
else
h =
if (
g:
t =
bbi
p =
il =
for
{

== nl)

=dn + r;
] -=r;
2;

t++;
count > max) break;
low < oldlow)

shift = 0.0;
oldlow = low;

shift = dn + r;
d[low] - shift;
fabs(h) < machtol)

h = (h <= 0.9) ? -machtol : machtol;

h;
g * h;
= bb[low];
t + bbi;
low;
(i =1ow+ 1; i<=n; i++)

s = bbi / p;

c=t/p;

h = d[i] - shift - bbi / h;
if (fabs(h) < machtol)

h = (h <= 0.9) ? -machtol :

oldg = g;
g=h*c;
t=g* h;

d[il] = oldg - g + d[i];

bbi = (i ==n) ? 0.0 : bb[i];
p =t + bbi;

bb[il] = s * p;

il = i;

machtol;



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

469 }

470 d[n] = g + shift;

471 }

472 }

473 nl=n-1;

474 }

475 em[3] = sqrt(bbmax);

476 em[5] = count;

477 return n;

478 }

479

480 void allzerortpol(int n, double b[], double c[],
481 double zer[], double em[])

482 {

483 int i;

484 double nrm;

485 double* bb = allocate_real_vector(@, n + 1);
486

487 nrm = fabs(b[0]);

488 for (i = 1; i <=n - 2; i++)

489 if (c[i] + fabs(b[i]) > nrm) nrm = c[i] + fabs(b[i]);
490 if (n > 1)

491 nrm = (nrm + 1 >= c[n - 1] + fabs(b[n - 1])) ? nrm + 1.0 :
492 (c[n - 1] + fabs(b[n - 1]));

493 em[1] = nrm;

494 for (i =n; i >=1; i--) zer[i] = b[i - 1];
495 dupvec(1, n - 1, @, bb, c);

496 grivalsymtri(zer, bb, n, em);

497 free_real_vector(bb, 0);

498 }

499

500 void alljaczer(int n, double alfa, double beta, double zer[])
501 {

502 double sum, min, gamma, zeri;

503 double* a = NULL, *b = NULL;

504 double em[6] = { @ };

505 int i, m;

506

507 if (alfa == beta)

508 {

509 a = allocate_real vector(@, n / 2 + 1);
510 b = allocate_real vector(@, n / 2 + 1);
511 m=n/ 2;

512 if (n1=2 *m)

513 {

514 gamma = 0.5;

515 zer[m + 1] = 0.0;

516 }

517 else

518 gamma = -0.5;

519 min = 0.25 - alfa * alfa;

520 sum = alfa + gamma + 2.0;



C:\Users\james\source\repos\NumDifInt\NumDifInt.c 11

521 a[@] = (gamma - alfa) / sum;

522 a[1] = min / sum / (sum + 2.0);

523 b[1] = 4.0 * (1.0 + alfa) * (1.0 + gamma) / sum / sum / (sum + 1.0);

524 for (i =2; i<=m-1; i++)

525 {

526 sum = (double)i + i + alfa + gamma;

527 a[i] = min / sum / (sum + 2.9);

528 sum *= sum;

529 b[i] = 4.0 * 1 * (i + alfa + gamma) * (i + alfa) * (i + gamma) / ?
sum / (sum - 1.0);

530 }

531 em[@] = DBL_MIN;

532 em[2] = DBL_EPSILON;

533 em[4] = 6.0 * m;

534 allzerortpol(m, a, b, zer, em);

535 for (i =1; i <=m; i++)

536 {

537 zer[i] = zeri = -sqrt((1.0 + zer[i]) / 2.0);

538 zer[n + 1 - i] = -zeri;

539 }

540 }

541 else

542 {

543 a = allocate_real vector(@, n + 1);

544 b = allocate_real vector(@, n + 1);

545 min = (beta - alfa) * (beta + alfa);

546 sum = alfa + beta + 2.0;

547 b[e] = 0.0;

548 a[@] = (beta - alfa) / sum;

549 a[1] = min / sum / (sum + 2.0);

550 b[1] = 4.0 * (1.0 + alfa) * (1.0 + beta) / sum / sum / (sum + 1.9);

551 for (i =2; i<=n-1; i++)

552 {

553 sum = (double)i + i + alfa + beta;

554 al[i] = min / sum / (sum + 2.9);

555 sum *= sum;

556 b[i] = 4.0 * 1 * (i + alfa + beta) * (i + alfa) * (i + beta) / (sum =
- 1.0) / sum;

557 }

558 em[@] = DBL_MIN;

559 em[2] = DBL_EPSILON;

560 em[4] = 6.0 * n;

561 allzerortpol(n, a, b, zer, em);

562 }

563

564 free_real_vector(a, 0);

565 free_real_vector(b, 0);

566

567

568 void alllagzer(int n, double alfa, double zer[])

569

570 double* a = NULL, *b = NULL, em[6] = { © };



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

12

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

int i;

a
b

allocate_real_vector(@, n + 1);
allocate_real_vector(@, n + 1);

b[@] = 0.0;

a[n - 1]

(double)n + n + alfa - 1.0;

for (i =1; i <=n - 1; i++)

{

a[i - 1] = (double)i + i + alfa - 1.0;
b[i] =1 * (i + alfa);

}

em[0]
em[2]
em[4]

DBL_MIN;
DBL_EPSILON;
6.0 * n;

allzerortpol(n, a, b, zer, em);
free_real_vector(a, 0);
free_real_vector(b, 0);

}

void Zeros

(

char name[],

double
double
int n,
double

alpha,
beta,

roots[])

double* zer = allocate_real _vector(@, n + 1);

int i;

if (strcmp(name, "Legendre") == 0)

{
double* b = allocate_real_vector(@, n);
double* ¢ = allocate_real_vector(@, n);
double em[6] = { © };
for (i =0; i < n; i++)
{
b[i] = 9.0;
[i] = (double)i * i / (4.0 * 1 * i - 1.0);
}
em[@] = em[2] = 1.0E-10;
em[4] = 5.0 * n;
allzerortpol(n, b, c, zer, em);
}
else if (strcmp(name, "Gegenbauer") == 0)
{

if (alpha > @)

alljaczer(n, alpha - 0.5, alpha - 0.5, zer);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

13

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

else if (alpha == @)

{
double* b = allocate_real_vector(@, n);
double* ¢ = allocate_real_vector(@, n);
double em[6] = { @ };

c[1] = 9.5;

for (int k = 2

= 2; k < n; k++)
c[k] = 0.25;

em[0]
em[4]

em[2] = 1.0E-10;
5.0 * n;

allzerortpol(n, b, c, zer, em);
free_real_vector(b, 0);
free_real_vector(c, 0);

}

else if (strcmp(name, "Generalized Laguerre") == 0)
alllagzer(n, alpha, zer);

else if (strcmp(name, "Jacobi") == @)
alljaczer(n, alpha, beta, zer);

for (i = 1; i <= n; i++)
roots[i] = zer[i];

free_real_vector(zer, 0);

}

// end H. T. Lau, PhD code

double ExtTrapezoidalRule(int n, double a, double b, double (*f)(double))
{

double h = (b - a) / n;
double s = 0.5 * (f(a) + f(b));
double x = a + h;

for (int 1 = 1; i < n; i++)
{

s += f(x);

X += h;

}

return h * s;

}

double ExtCorrTrapezoidalRule(
int n, double a, double b,
double (*f)(double),



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

675 double (*dfdx)(double))

676 {

677 double h = (b - a) / n;

678 double s = 0.5 * (f(a) + f(b));
679 double x = a + h;

680

681 for (int 1 = 1; i < n; i++)

682 {

683 s += F(x);

684 X += h;

685 }

686

687 s =h*s + h * h* (dfdx(a) - dfdx(b)) / 12.0;
688 return s;

689 }

690

691 double ExtSimpsonsRule(int n, double a, double b, double (*f)(double))
692 {

693 double h = (b - a) / n;

694 double h2 = 2.0 * h;

695 double s = 0.0;

696 double t = 0.0;

697 double x = a + h;

698

699 for (int 1 =1; i < n; i += 2)
700 {

701 s += F(x);

702 X += h2;

703 }

704

705 X = a + h2;

706

707 for (int 1 =2; i < n; i 4= 2)
708 {

709 t += F(x);

710 X += h2;

711 }

712

713 return h * (f(a) +4 * s + 2 * t + f(b)) / 3.0;
714 }

715

716 double AdaptiveExtSimpsonsRule(int n, double a, double b, double (*f)(double))
717 {

718 double h = (b - a) / n;

719 double s = 0.0;

720

721 for (int 1 =0; 1 <=n - 1; i++)
722 {

723 double xi = a + i * h;

724 double x4 = xi + 0.25 * h;
725 double x2 = xi + 0.50 * h;
726 double x3 = xi + 0.75 * h;



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

727 double x1 = a + (i + 1.0) * h;

728

729 s += f(xi) + 4.0 * f(x4) + 2.0 * £(x2) +
730 4.0 * f(x3) + f(x1);

731 }

732

733 return s * h / 12.0;

734 }

735

736 void GenerateGaussianLegendreAbscissasAndWeights(int n, double x[], double w[])
737 {

738 double* roots = allocate_real vector(@, n);
739 Zeros("Legendre", 0.0, 0.0, n, roots);

740

741 for (int 1 = 1; i <= n; i++)

742 {

743 double xi = roots[i];

744 double fd = opgx("Legendre", xi, n);
745 double x2 = 1.0 - xi * xi;

746

747 x[1] = xi;

748 wlfi] = 2.0 / (x2 * fd * fd);

749 }

750

751 free_real_vector(roots, 9);

752 }

753

754 double sinx2divx(double x)

755 {

756 double sinx = sin(x);

757 return sinx * sinx / x;

758 }

759

760 double GLIntegratell(int n, double x[], double w[], double (*f)(double))
761 {

762 double sum = 0.9;

763

764 for (int i = 1; i <= n; i++)

765 sum += w[i] * f(x[i]);

766

767 return sum;

768 }

769

770 double GLIntegrateAB(int n, double a, double b,
771 double x[], double w[], double (*f)(double))
772 {

773 double ¢ = (b - a) / 2.0;

774 double d = (b + a) / 2.0;

775 double sum = 0.9;

776

777 for (int 1 = 1; i <= n; i++)

778 sum += w[i] * f(c * x[i] + d);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

16

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

}

return c * sum;

void CreateTable7_1(FILE* out file)

{

}

double h[] = { 1.0, 0.1, 0.01, 0.001, 0.0001 };

int i = 9;

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

"From Numerical Analysis: ");
"An Algorithmic Approach\n");
"(c) 1980 S. D. Conte and ");

"Carl de Boor\n\n");
"Table 7.1\n\n");

" h\t
" Dh\t\t

for (i = 0; i < 5; i++)

{
double hi

double Dh

h[i], x = ©;
cDfDx(x, hi, f1);

double Dh2 = cD2fDx2(x, hi, f2);

fprintf_s(out file, "%6.41f\t", hi);
fprintf_s(out file, "%17.10e\t%17.10e\t", f1(hi), f2(hi));
fprintf_s(out file, "%17.10e\t%17.10e\n", Dh, Dh2);

void Exercise7_1 1(FILE* out file)

{

B

double h = @.
double x[] =
double f[] =

1
{1.2, 1.3, 1.4, 1.5, 1.6 };
{ 1.5095, 1.6984, 1.9043,

2.1293, 2.3756 };

double fdfdx
double cdfdx

(f[3] - f[2]) / h;
(f[3] - f[1]) / (2.8 * h);

exp(h)\t\t

exp(-h)\t\t");

D2h\n");

double idfdx = (-3.0 * f[2] + 4.0 * f[3] - f[4]) / (2.0 * h);
double cd2fdx2 = (f[1] - 2.0 * f[2] + f[3]) / (h * h);
double fp = cosh(1.4), fpp = sinh(1.4);
double errorl = fabs(fp - fdfdx);

double error2
double error3
double error4

fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

fabs(fp - cdfdx);
fabs(fp - idfdx);
fabs(fpp - cd2fdx2);

"Exercise 7.1-1\n\n");

"%s", "f'(1.4) = cosh(1.4)

"%8.61F\n", fp);

"%s", "Forward f'(1.4)

"%8.61f\n", fdfdx);
"%s", "Error

")s
")s

=");



C:\Users\james\source\repos\NumDifInt\NumDifInt.c 17

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

}

fprintf_s(out file,
fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

"%8.61f\n", errorl);
ll\nll);

"%s", "Central f'(1.4) =
"%8.61f\n", cdfdx);

"%s", "Error =
"%8.61f", error2);

"\m\n");

")s
")s

"%s", "Interpo f'(1
"%8.61f\n", idfdx);
"%s", "Error =
"%8.61f", error3);

"\m\n");

-4) =");

")s

"%s", "f''(1.4) =
"%8.61f\n", fpp);
"%s", "Central f''(1.4)
"%8.61f\n", cd2fdx2);
"%s", "Error

"%8.61f", errord);
"\m\n");

sinh(1.4) "),

")
=");

void Exercise7_1 2(FILE* out file)

{

double x[]
double f[]

{ ©.398, ©.399, 0.400, 0.401, 0.402 };
{ ©.408591, 0.409671, 0.410752,

0.411834, 0.412915 },;

double hl = 0.001, h2 = 0.002;

double cdfdxl = (f[3] - f[1]) / (2.0 * hl);
double cdfdx2 = (f[4] - f[@]) / (2.0 * h2);
double fp = cosh(0.4);

double errorl = fabs(fp - cdfdxl);

double error2 = fabs(fp - cdfdx2);

fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

"Exercise 7.1-2\n\n");

"% s", "f'(0.4) = cosh(0.4) = ");
"%12.101f\n", cosh(0.4));

"%s", "Centrall f'(0.4) =");
"%12.101f\n", cdfdxl);

"%s", "Error =");
"%12.101f", errorl);

"\m\n");

"% s", "f'(0.4) = cosh(0.4) = ");
"%12.101f\n", cosh(0.4));

"%s", "Central2 f'(0.4) ");
"%12.101f\n", cdfdx2);

"%s", "Error =");

"%12.101f", error);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

18

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

}

fprintf_s(out file, "\n\n");

void Exercise7_1 3(FILE* out file)

{

}

double h = 0.1,
double E_plus
double errorH

1
© ® X
S ® 1

do
{

double y1
double fyl
double fy2

)

)

0, fp = cosh(x);
E_minus = 0.0;

X - h, y2 = x + h;
sinh(x + h);
sinh(x - h);

double fpl = (fyl - fy2) / (2.0 * h);
errorH = fabs(fyl - fy2);

h /= 1.0000005;
} while (errorH > ©

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

5e-7);

"Exercise 7.1-3\n\n");
"E_+ - E_- = %16.10e\n", errorH);
"h = %16.10e\n\n", h);

void Example7_2(FILE* out file)

{

double a
double R
double M
double T =
double S
double C

a, b, NegSqrExp
double ER = fabs(R
double EM = fabs(M
double ET = fabs(T
double ES = fabs(S
double EC = fabs(C

fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

)

=0, b =1, exact = 0.74682;

= RectangleRule(a, b, NegSqrExp);

= MidPointRule(a, b, NegSqrExp);
TrapezoidalRule(a, b, NegSqrExp);
= SimpsonsRule(a, b, NegSqrExp);

= CorrectedTrapezoidalRule(

dExp2dx);
exact);
exact);
exact);
exact);
exact);

"Example 7.2.1\n\n");

"f(x) = exp(-x * x), a =0, b =1\n");

"%s", "Rectangle Rule =");
"%7.51f\n", R);
"%s", "Error Y

"%7.51f\n", ER);

"%s", "Mid-point Rule
"%7.51f\n", M);

"%s", "Error =");
"%7.51f\n", EM);

")s



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

935 fprintf_s(out file, "%s", "Trapezoidal Rule = ");
936 fprintf_s(out file, "%7.51f\n", T);

937 fprintf_s(out file, "%s", "Error =");
938 fprintf_s(out file, "%7.51f\n", ET);

939

940 fprintf_s(out file, "%s", "Simpson's Rule = ");
941 fprintf_s(out file, "%7.51f\n", S);

942 fprintf_s(out file, "%s", "Error =");
943 fprintf_s(out file, "%7.51f\n", ES);

944

945 fprintf_s(out file, "%s", "Corrected Rule =");
946 fprintf_s(out file, "%7.51f\n", C);

947 fprintf_s(out file, "%s", "Error =");
948 fprintf_s(out file, "%7.51f\n\n", EC);

949 }

950

951 void Example7_2a(FILE* out file)

952 {

953 int n = 4;

954 double a = 0.0, b = 1.0;

955 double error = 0.0, gi = 0.0;

956 double* w = allocate_real_vector(@, n);

957 double* x = allocate_real_vector(@, n);

958 int i;

959

960 GenerateGaussianLegendreAbscissasAndWeights(n, x, w);
961 gi = GLIntegrateAB(n, a, b, x, w, NegSqrExp);

962

963 fprintf_s(out file, "Example 7.2a\n\n");

964

965 fprintf_s(out file, "f(x) = exp(-x * x), a =0, b = 1\n");
966 fprintf_s(out file, "Abscissa\t\tWeight\n");

967

968 for (i = 1; i <= n; i++)

969 fprintf_s(out_file, "x[%1ld] = %+10.81f\tw[%1d] = %+10.81f\n",
970 i, x[1], i, w[i]);

971

972 fprintf_s(out file, "\n");

973 fprintf_s(out file, "%s", "Gaussian Quadrature = ");
974 fprintf_s(out file, "%10.81f\n\n", gi);

975

976 free_real_vector(w, 0);

977 free_real_vector(x, 0);

978 }

979

980 void Example7_ 3(FILE* out file)

981 {

982 int n = 4;

983 double a = 1.0, b = 3.0;

984 double error = 0.0, exact = 0.79482518, gi = 0.0;
985 double* w = allocate_real_vector(@, n);

986 double* x = allocate_real_vector(@, n);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

20

987

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

}

int i;

GenerateGaussianLegendreAbscissasAndWeights(n, x, w);
gi = GLIntegrateAB(n, a, b, x, w, sinx2divx);

fprintf_s(out file,
fprintf_s(out file,

fprintf_s(out file,
for (i = 1; i <= n;

"Example 7.3\n\n");
"Abscissa\t\tWeight\n");

"f(x) = (sin(x))*2 / x, a =1, b = 3\n");
i++)

fprintf_s(out_file, "x[%1ld] = %+10.81f\tw[%1d] = %+10.81f\n",

i, x[i], i,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

free_real_vector(w,
free_real_vector(x,

double xsinx(double x)

{
}

return x * sin(x);

wli]);

"\n");
"%s", "Gaussian Quadrature
"%10.81f\n", gi);

"%s", "Error =");
"%10.81f\n\n", fabs(gi - exact));

")s

0);
0);

double dxsinxdx(double x)

{
}

return (sin(x) + x * cos(x));

void Exercise7_2 2(FILE* out file)

{

double a

double R

double M

double T =

double S

double C

double ER = fabs(R
double EM = fabs(M
double ET = fabs(T
double ES = fabs(S
double EC = fabs(C

fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

=0, b =1, exact =

sin(1) - cos(1);

= RectangleRule(a, b, xsinx);

= MidPointRule(a, b, xsinx);
TrapezoidalRule(a, b, xsinx);

= SimpsonsRule(a, b, xsinx);

= CorrectedTrapezoidalRule(a, b, xsinx,

dxsinxdx);
exact);
exact);
exact);
exact);
exact);

"Exercise 7.2-2\n\n");
II_F(X) -

"%s", "Rectangle Rule
"%10.81f\n", R);

x * sin(x), a = @, b = 1\n");

=");



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1039 fprintf_s(out file, "%s", "Error =");
1040 fprintf_s(out file, "%10.81f\n", ER);

1041

1042 fprintf_s(out file, "%s", "Mid-point Rule = ");
1043 fprintf_s(out file, "%10.81f\n", M);

1044 fprintf_s(out file, "%s", "Error =");
1045 fprintf_s(out file, "%10.81f\n", EM);

1046

1047 fprintf_s(out file, "%s", "Trapezoidal Rule = ");
1048 fprintf_s(out file, "%10.81f\n", T);

1049 fprintf_s(out file, "%s", "Error =");
1050 fprintf_s(out file, "%10.81f\n", ET);

1051

1052 fprintf_s(out file, "%s", "Simpson's Rule = ");
1053 fprintf_s(out file, "%10.81f\n", S);

1054 fprintf_s(out file, "%s", "Error =");
1055 fprintf_s(out file, "%10.81f\n", ES);

1056

1057 fprintf_s(out file, "%s", "Corrected Rule =");
1058 fprintf_s(out file, "%10.81f\n", C);

1059 fprintf_s(out file, "%s", "Error =");
1060 fprintf_s(out file, "%10.81f\n\n", EC);

1061 }

1062

1063 double F(double x)

1064 {

1065 double result = 0.0;

1066

1067 if (x >= 0 & x <= 0.5)

1068 result = x;

1069 else if (x >= 0.5 && x <= 1.0)

1070 result = 1.0 - x;

1071

1072 return result;

1073 }

1074

1075 double dFdx(double x)

1076 {

1077 double result = 0.0;

1078

1079 if (x >= 0 & x <= 0.5)

1080 result = 1;

1081 else if (x >= 0.5 && x <= 1.0)

1082 result = -1.0;

1083

1084 return result;

1085 }

1086

1087 void Exercise7_2 3(FILE* out file)

1088 {

1089 double S = SimpsonsRule(0.0, 1.0, F);

1090 double C

CorrectedTrapezoidalRule(0.0, 1.0, F, dFdx);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

double T = TrapezoidalRule(©.0, 1.0, F);
fprintf_s(out file, "Exercise 7.2-3\n\n");

fprintf_s(out file, "f(x) = x, a =0, b =1/ 2\n");

fprintf_s(out file, "f(x) =1 - x, a=1/ 2, b =1\n");

fprintf_s(out_file, "%s", "Trapezoidal Rule = ");
fprintf_s(out file, "%10.81f\n", T);

T = TrapezoidalRule(0.0, 0.5, F) +
TrapezoidalRule(9.5, 1.0, F);

fprintf_s(out file, "%s", "Trapezoidal Rule = ");
fprintf_s(out file, "%10.81f\n", T);
fprintf_s(out file, "%s", "Simpson's Rule = ");
fprintf_s(out file, "%10.81f\n", S);
fprintf_s(out file, "%s", "Corrected Rule =");

fprintf_s(out file, "%10.81f\n\n", C);

}

double Fx(double x)

{
return pow(1.0 - x * x, 1.5);

}

void Exercise7_2 5(FILE* out file)

{
double S = SimpsonsRule(0.0, 1.0, Fx);
fprintf_s(out file, "Exercise 7.2-5\n\n");
fprintf_s(out_file, "%s", "Simpson's Rule = ");
fprintf_s(out file, "%10.81f\n\n", S);

}

void Exercise7_2 6(FILE* out file)

{
double T = TrapezoidalRule(©.0, 1.0, NegSqrExp);
fprintf_s(out file, "Exercise 7.2-6\n\n");
fprintf_s(out file, "f(x) = exp(-x * x), a =0, b =
fprintf_s(out file, "%s", "Trapezoidal Rule = ");
fprintf_s(out file, "%10.81f\n\n", T);

}

void Exercise7_3 4(FILE* out file)
{
int n = 6, N = 1024;
double a = 0.9, b = 32.0, pi = 4.0 * atan(1.0);

1\n");

double error = 0.0, exact = sqrt(pi) / 2.9, gi = 0.0;

double* w = allocate_real_vector(@, n);
double* x = allocate_real_vector(@, n);
double S = ExtSimpsonsRule(N, a, b, NegSqrExp);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c 23

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194

}

double T = ExtTrapezoidalRule(N, a, b, NegSqrExp);

GenerateGaussianLegendreAbscissasAndWeights(n, x, w);
gi = GLIntegrateAB(n, a, b, x, w, NegSqrExp);

fprintf_s(out file, "Exercise 7.3-4\n\n");

fprintf_s(out file, "f(x) = exp(-x * x), a =0, b = 1\n");
fprintf_s(out _file, "%s", "Gaussian Quadrature "),
fprintf_s(out file, "%10.81f\n", gi);

fprintf_s(out file, "%s", "Error =");
fprintf_s(out file, "%10.81f\n\n", fabs(gi - exact));

fprintf_s(out_file, "%s", "Ext Trapezoidal Rule
fprintf_s(out file, "%10.81f\n", T);

fprintf_s(out file, "%s", "Error =");
fprintf_s(out file, "%10.81f\n\n", fabs(T - exact));

")

fprintf_s(out file, "%s", "Ext Simpson's Rule
fprintf_s(out file, "%10.81f\n", S);

fprintf_s(out file, "%s", "Error =");
fprintf_s(out file, "%10.81f\n\n", fabs(S - exact));

")

free_real_vector(w, 0);
free_real_vector(x, 0);

int Nn = 0;

double xn(double x)

{
}

return pow(x, Nn);

void Exercise7_3 9(FILE* out file)

{

int n = 9;

double a = -1.9, b = 1.0, pi = 4.0 * atan(1.0);
double error = 0.0, exact = sqrt(pi) / 2.9, gi = 0.0;
double* w = allocate_real_vector(@, n);

double* x = allocate_real_vector(@, n);

fprintf_s(out file, "Exercise 7.3-9\n");
fprintf_s(out file, "f(x) = [1 - pow(-1, n + 1)] / (n + 1)\n\n");

for (n = @; n <= 8; n++)
{
Nn = n;
double exact = (1 - pow(-1.9, n + 1.0)) / (n + 1.0);
double* w = allocate_real vector(o, n);
double* x = allocate_real vector(o, n);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

24

1195 GenerateGaussianLegendreAbscissasAndWeights(n, x, w);
1196 gi = GLIntegratell(n, x, w, Xxn);

1197

1198 fprintf_s(out file, "f(x) = x*n, a = -1, b = 1\n");
1199 fprintf_s(out _file, "n = %1d\n", n);

1200 fprintf_s(out file, "%s", "Gaussian Quadrature = ");
1201 fprintf_s(out file, "%+10.81f\n", gi);

1202 fprintf_s(out file, "%s", "Error =");
1203 fprintf_s(out file, "%+10.81f\n", fabs(gi - exact));
1204

1205 free_real_vector(w, 90);

1206 free_real_vector(x, 90);

1207 }

1208

1209 fprintf_s(out file, "\n");

1210 }

1211

1212 double xlnx(double x)

1213 {

1214 return x * log(x);

1215 }

1216

1217 void Exercise7_4 3(FILE* out file)

1218 {

1219 int N = 9;

1220 double a = 1.0, b = 2.0;

1221

1222 fprintf_s(out file, "Exercise 7.3-9\n\n");

1223

1224 for (N = 10; N <= 20; N += 10)

1225 {

1226 double S = ExtSimpsonsRule(N, a, b, xlnx);

1227

1228 fprintf_s(out file, "f(x) = x * In(x) a = 1, b = 2\n");
1229 fprintf_s(out file, "%s", "Ext Simpson's Rule = ");
1230 fprintf_s(out file, "%10.81f\n\n", S);

1231 }

1232 }

1233

1234 double xexpx(double x)

1235 {

1236 return x * exp(-x);

1237 }

1238

1239 double xcosx(double x)

1240 {

1241 return x * cos(x);

1242 }

1243

1244 double powx2(double x)

1245 {

1246 return pow(1.0 + x * x, 1.5);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c 25

1247 }

1248

1249 void Exercise7_4 4(FILE* out file)

1250 {

1251 int N = 9;

1252 double a = 1.0, b = 2.0, d = 0.0, integl = 0.0, integ2 = 0.9;
1253

1254 fprintf_s(out file, "Exercise 7.4-4\n\n");

1255 fprintf_s(out file, "f(x) = x * exp(-x) a = 0, b = 1\n");
1256

1257 for (N = 10; N <= 100; N *= 2)

1258 {

1259 double S = ExtSimpsonsRule(N, a, b, xexpx);
1260

1261 if (N == 10)

1262 integl = S;

1263 else

1264 {

1265 integ2 = S;

1266 d = fabs(integl - integ2);

1267 integl = integ2;

1268 }

1269

1270 fprintf_s(out file, "%s", "Ext Simpson's Rule = ");
1271 fprintf_s(out file, "%10.81f\t", S);

1272 fprintf_s(out file, "%s", "Delta = ");

1273 fprintf_s(out file, "%10.81f\t", d);

1274 fprintf_s(out file, "%s", "N = ");

1275 fprintf_s(out file, "%1ld\n", N);

1276

1277 if (N > 10 && d < 1.0e-6)

1278 break;

1279 }

1280

1281 d = 0.0;

1282 fprintf_s(out file, "f(x) = x * cos(x) a = @, b = 1\n");
1283

1284 for (N = 10; N <= 100; N *= 2)

1285 {

1286 double S = ExtSimpsonsRule(N, a, b, xcosx);
1287

1288 if (N == 10)

1289 integl = S;

1290 else

1291 {

1292 integ2 = S;

1293 d = fabs(integl - integ2);

1294

1295 integl = integ2;

1296 }

1297

1298 fprintf_s(out file, "%s", "Ext Simpson's Rule = ");



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

fprintf_s(out file, "%10.81f\t", S);
fprintf_s(out file, "%s", "Delta = ");
fprintf_s(out file, "%10.81f\t", d);
fprintf_s(out file, "%s", "N = ");
fprintf_s(out file, "%1ld\n", N);

if (N > 10 && d < 1.0e-6)
break;

}

d =0.0;

fprintf_s(out file, "f(x) = (1 + x * x) ~ 1.5 a

for (N = 10; N <= 100; N *= 2)

{
double S = ExtSimpsonsRule(N, a, b, powx2);
if (N == 10)
integl = S;
else
{
integ2 = S;
d = fabs(integl - integ2);
integl = integ2;
}
fprintf_s(out file, "%s", "Ext Simpson's Rule
fprintf_s(out file, "%10.81f\t", S);
fprintf_s(out file, "%s", "Delta = ");
fprintf_s(out file, "%10.81f\t", d);
fprintf_s(out file, "%s", "N = ");
fprintf_s(out file, "%1ld\n", N);
if (N > 10 && d < 1.0e-6)
break;
}
fprintf_s(out file, "\n");
}
double dxlnxdx(double x)
{
return (log(x) + 1.0);
}

void Exercise7_4 5(FILE* out file)

{
double a = 1.0, b = 2.0;
double d 0.0, integl = 0.0, integ2 = 0.9;
int N = 9;

fprintf_s(out file, "Exercise 7.4-5\n\n");

")



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

27

1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402

fprintf_s(out file, "f(x) = x * In(x) a = 1, b = 2\n");

for (N = 10; N <= 100; N *= 2)

{
double C = ExtCorrTrapezoidalRule(N, a, b, xlnx,
if (N == 10)

integl = C;
else
{

integ2 = C;

d = fabs(integl - integ2);

integl = integ2;

}
fprintf_s(out file, "%s",

"Ext Corrected Trapezoidal Rule = ");
fprintf_s(out file, "%10.81f\t", C);
fprintf_s(out file, "%s", "Delta = ");
fprintf_s(out file, "%10.81f\t", d);
fprintf_s(out file, "%s", "N = ");
fprintf_s(out file, "%1ld\n", N);
if (N > 10 && d < 1.0e-6)

break;

}
d =0.0;

fprintf_s(out file, "\n");

for (N = 10; N <= 100; N *= 2)

{

double S = ExtSimpsonsRule(N, a, b, xlnx);

if (N == 10)
integl = S;
else
{
integ2 = S;

d = fabs(integl - integ2);
integl = integ2;
}

dx1lnxdx);

fprintf_s(out file, "%s", "Ext Simpson's Rule = ");

fprintf_s(out file, "%10.81f\t", S);
fprintf_s(out file, "%s", "Delta = ");
fprintf_s(out file, "%10.81f\t", d);
fprintf_s(out file, "%s", "N = ");
fprintf_s(out file, "%1ld\n", N);

if (N > 10 && d < 1.0e-6)
break;



C:\Users\james\source\repos\NumDifInt\NumDifInt.c 28

1403 }

1404

1405 fprintf_s(out file, "\n");

1406 }

1407

1408 void Exercise7_4 6(FILE* out file)

1409 {

1410 double a = 1.0, b = 2.0, gi = 0.0;

1411 int N = 9;

1412

1413 fprintf_s(out file, "Exercise 7.4-6\n\n");
1414 fprintf_s(out file, "f(x) = x * In(x) a = 1, b = 2\n");
1415

1416 for (N = 2; N <= 4; N += 2)

1417 {

1418 double* w = allocate_real vector(@, N);
1419 double* x = allocate_real vector(@, N);
1420

1421 GenerateGaussianLegendreAbscissasAndWeights(N , x, w);
1422 gi = GLIntegrateAB(N, a, b, x, w, xlnx);
1423 fprintf_s(out file, "%s", "Gaussian Quadrature = ");
1424 fprintf_s(out file, "%+10.81f\t", gi);
1425 fprintf_s(out _file, "N = %1d\n", N);
1426

1427 free_real_vector(w, 90);

1428 free_real_vector(x, 90);

1429 }

1430

1431 fprintf_s(out file, "\n");

1432 }

1433

1434 double erfx(double x)

1435 {

1436 double pi = 4.0 * atan(1.0);

1437

1438 return 2.0 * exp(-x * x) / sqrt(pi);

1439 }

1440

1441 void Exercise7_4 7(FILE* out file)

1442 {

1443 double a = 0.0, b = 0.5, gi = 0.0;

1444 double exact = 0.520499876;

1445 int N = 9;

1446

1447 fprintf_s(out file, "Exercise 7.4-6\n\n");
1448 fprintf_s(out file, "f(x) = erf(0.5) a = 1, b = 2\n");
1449

1450 for (N = 2; N <= 4; N += 2)

1451 {

1452 double* w = allocate_real vector(@, N);

1453 double* x = allocate_real vector(o, N);
1454



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506

}

GenerateGaussianLegendreAbscissasAndWeights(N, x, w);
gi = GLIntegrateAB(N, a, b, x, w, erfx);

fprintf_s(out file, "%s", "Gaussian Quadrature = ");
fprintf_s(out file, "%12.101f\t", gi);
fprintf_s(out_file, "%s", "Error = ");

fprintf_s(out file, "%12.101f\t", fabs(gi - exact));
fprintf_s(out _file, "N = %1d\n", N);

free_real_vector(w, 90);
free_real_vector(x, 90);

}

fprintf_s(out file, "\n");

double sinx3(double x)

{

}

return pow(sin(x), 1.0 / 3.9);

void Exercise7_4 8(FILE* out file)

{

}

double a = 0.9, b = 4.0 * atan(1.9);
int N = 9;

fprintf_s(out file, "Exercise 7.4-5\n\n");
fprintf_s(out file, "f(x) = (sin(x)) ~1 / 3 a =0, b = pi\n");

for (N = 5; N <= 20; N += 5)

{
double S = ExtSimpsonsRule(N, a, b, sinx3);
fprintf_s(out file, "%s",

"Ext Simpson's Rule = ");

fprintf_s(out file, "%10.81f\t", S);
fprintf_s(out file, "%s", "N = ");
fprintf_s(out file, "%1ld\n", N);

}

fprintf_s(out file, "\n");

void Example7_8(FILE* out file)

{

double AS16 = AdaptiveExtSimpsonsRule(16, @, 1, sqrt);
double AS32 = AdaptiveExtSimpsonsRule(32, @, 1, sqrt);
double AS48 = AdaptiveExtSimpsonsRule(48, @, 1, sqrt);
double AS64 = AdaptiveExtSimpsonsRule(64, @0, 1, sqrt);
double AS80 = AdaptiveExtSimpsonsRule(80, @, 1, sqrt);
double AS96 = AdaptiveExtSimpsonsRule(96, @, 1, sqrt);

double ES16 = ExtSimpsonsRule(1l6, @, 1, sqrt);
double ES32 = ExtSimpsonsRule(32, @, 1, sqrt);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

}

double ES48 = ExtSimpsonsRule(48, 1,
double ES64 = ExtSimpsonsRule(64, 0, 1,
double ES80 = ExtSimpsonsRule(80, 0, 1,
double ES96 = ExtSimpsonsRule(96, 0, 1,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

"Example 7.8\n\n");
"f(x) = sgrt(x) a =
"%s", "Adaptive Ext
"%12.101F\n", AS16);

"%s", "Adaptive Ext Simpson's Rule

"%12.101f\n", AS32);

"%s", "Adaptive Ext Simpson's Rule

"%12.101f\n", AS48);

"%s", "Adaptive Ext Simpson's Rule

"%12.101f\n", AS64);

"%s", "Adaptive Ext Simpson's Rule

"%12.101f\n", AS80);

"%s", "Adaptive Ext Simpson's Rule

"%12.101f\n", AS96);

sqrt);
sqrt);
sqrt);
sqrt);

9, b = 1\n");

Simpson's Rule

"%s", "Extended Simpson's Rule

"%12.101f\n", ES16);

"%s", "Extended Simpson's

"%12.101f\n", ES32);

"%s", "Extended Simpson's

"%12.101f\n", ES48);

"%s", "Extended Simpson's

"%12.101f\n", ES64);

"%s", "Extended Simpson's

"%12.101f\n", ES80);

"%s", "Extended Simpson's

"%12.101f\n", ES96);
ll\nll);

void Exercise7_ 5 3(FILE* out file)

{

double AS16 = AdaptiveExtSimpsonsRule(16, 0,
double AS32 = AdaptiveExtSimpsonsRule(32, 0,
double AS48 = AdaptiveExtSimpsonsRule(48, 0,
double AS64 = AdaptiveExtSimpsonsRule(64, 0,
double AS80 = AdaptiveExtSimpsonsRule(80, 0,
double ES16 = ExtSimpsonsRule(16, 0, 1, Fx);
double ES32 = ExtSimpsonsRule(32, 9, 1, Fx);
double ES48 = ExtSimpsonsRule(48, 0, 1, Fx);
double ES64 = ExtSimpsonsRule(64, 0, 1, Fx);
double ES80 = ExtSimpsonsRule(80, 0, 1, Fx);

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

"Exercise 7.5-3\n\n");
"f(x) = (1 - x *x)~1.5a=0, b=1\n");
"%s", "Adaptive Ext Simpson's Rule 16 = ");

"%12.101f\n", AS16);

Rule

Rule

Rule

Rule

Rule

-

-

R R R PRPR
-

-

16

32

48

64

80

96

Fx);
s FX);
Fx);
Fx);
Fx);

16

32

48

64

80

96

")
")
")
")
")
")

")
")
")
")
")
")



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610

fprintf_s(out_file, "%s", "Adaptive Ext Simpson's Rule 32
fprintf_s(out file, "%12.101f\n", AS32);
fprintf_s(out_file, "%s", "Adaptive Ext Simpson's Rule 48
fprintf_s(out file, "%12.101f\n", AS48);
fprintf_s(out_file, "%s", "Adaptive Ext Simpson's Rule 64
fprintf_s(out file, "%12.101f\n", AS64);
fprintf_s(out_file, "%s", "Adaptive Ext Simpson's Rule 80
fprintf_s(out file, "%12.101f\n", AS80);
fprintf_s(out_file, "%s", "Extended Simpson's Rule 16
fprintf_s(out file, "%12.101f\n", ES16);
fprintf_s(out_file, "%s", "Extended Simpson's Rule 32
fprintf_s(out file, "%12.101f\n", ES32);
fprintf_s(out_file, "%s", "Extended Simpson's Rule 48
fprintf_s(out file, "%12.101f\n", ES48);
fprintf_s(out file, "%s", "Extended Simpson's Rule 64
fprintf_s(out file, "%12.101f\n", ES64);
fprintf_s(out file, "%s", "Extended Simpson's Rule 80
fprintf_s(out file, "%12.101f\n", ES80);
fprintf_s(out file, "\n");

}

double sinxx32(double x)

{
if (x == @)

return 0.0;
else
return sin(x) / pow(x, 1.5);

}

void Exercise7 5 4(FILE* out file)

{
double AS16 = AdaptiveExtSimpsonsRule(16, @, 1, sinxx32);
double AS32 = AdaptiveExtSimpsonsRule(32, @, 1, sinxx32);
double AS48 = AdaptiveExtSimpsonsRule(48, 0@, 1, sinxx32);
double AS64 = AdaptiveExtSimpsonsRule(64, @, 1, sinxx32);
double AS80 = AdaptiveExtSimpsonsRule(80, ©, 1, sinxx32);
double ES16 = ExtSimpsonsRule(16, ©, 1, sinxx32);
double ES32 = ExtSimpsonsRule(32, 9, 1, sinxx32);
double ES48 = ExtSimpsonsRule(48, 0, 1, sinxx32);
double ES64 = ExtSimpsonsRule(64, 0, 1, sinxx32);
double ES80 = ExtSimpsonsRule(80, 0, 1, sinxx32);

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

"Exercise 7.5-3\n\n");

"f(x) = (1 - x *x) ~1.5a

")
")
")
")

")
")
")
")
")

=0, b = 1\n");

"%s", "Adaptive Ext Simpson's Rule 16

"%12.101f\n", AS16);

"%s", "Adaptive Ext Simpson's Rule 32

"%12.101f\n", AS32);

"%s", "Adaptive Ext Simpson's Rule 48

"%12.101f\n", AS48);

"%s", "Adaptive Ext Simpson's Rule 64

")
")
")
")



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

")s

1611 fprintf_s(out file, "%12.101f\n", AS64);

1612 fprintf_s(out_file, "%s", "Adaptive Ext Simpson's Rule 80
1613 fprintf_s(out file, "%12.101f\n", AS80);

1614

1615 fprintf_s(out_file, "%s", "Extended Simpson's Rule 16
1616 fprintf_s(out file, "%12.101f\n", ES16);

1617 fprintf_s(out_file, "%s", "Extended Simpson's Rule 32
1618 fprintf_s(out file, "%12.101f\n", ES32);

1619 fprintf_s(out_file, "%s", "Extended Simpson's Rule 48
1620 fprintf_s(out file, "%12.101f\n", ES48);

1621 fprintf_s(out _file, "%s", "Extended Simpson's Rule 64
1622 fprintf_s(out file, "%12.101f\n", ES64);

1623 fprintf_s(out file, "%s", "Extended Simpson's Rule 80
1624 fprintf_s(out file, "%12.101f\n", ES80);

1625 fprintf_s(out file, "\n");

1626 }

1627

1628 void RombergIntegration(

1629 FILE* out file, double (*f)(double), double a,

1630 double b, int mStart, int nrow)

1631 {

1632 // translated from Conte and de Boor's FORTRAN code
1633

1634 double h = 0.0, ratio = 0.0, sum = 0.0;

1635 double** T = allocate_real_matrix(1, nrow, 1, nrow);
1636 inti=o, j=0, k=0, m=0;

1637

1638 for (i = 1; i <= nrow; i++)

1639 for (j = 1; j <= nrow; j++)

1640 T[i][]j] = @.0;

1641

1642 m = mStart;

1643 h=(b-2a)/m

1644 sum = 0.5 * (f(a) + f(b));

1645

1646 if (m > 1)

1647 {

1648 for (i =1; i <=m - 1; i++)

1649 sum += f(a + i * h);

1650 }

1651

1652 T[1][1] = sum * h;

1653

1654 fprintf_s(out file, "Romberg T-Table\n");

1655 fprintf_s(out file, "%17.101f\n", T[1][1]);

1656

1657 if (nrow < 2)

1658 return;

1659

1660 for (k = 2; k <= nrow; k++)

1661 {

1662 h /= 2.0;



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714

}

m *= 2;

sum = 0.0;

for (i =1; i<=m; i += 2)
sum += f(a + 1 * h);

T[k][1] = T[k - 1][1] / 2.0 + sum * h;

for (j =1; j <=k - 1; j++)

{

Tk - 1][3]
TIk][F + 1]

}

TkI[3] - T[k - 1][31;
T(kI[3] + T[k - 1][3] / (pow(4.0, J) - 1.8);

for (j = 1; j <= k; j++)
fprintf_s(out file, "%17.101f\t", T[kI[j]);

fprintf_s(out _file, "\n");

}

if (nrow < 3
return;

)

fprintf_s(out file, "Table of ratios\n");

for (k = 1; k <= nrow - 2; k++)

{
for (j = 1; j <= k; j++)
{
if (T[k + 1][j] == @.90)
ratio = 0.9;
else
ratio = T[k][j] / T[k + 1]1[j];
T[k][]j] = ratio;
¥
for (j = 1; j <= k; j++)
fprintf_s(out file, "%6.21f\t", T[k][j1);
fprintf_s(out file, "\n");
}

fprintf_s(out file, "\n");
free_real_matrix(T, 1, nrow, 1);

void My Example(FILE* out file)

{

double AS16
double AS32
double AS48

AdaptiveExtSimpsonsRule(16, 0, 100, NegSqrExp);
AdaptiveExtSimpsonsRule(32, 0, 100, NegSqrExp);
AdaptiveExtSimpsonsRule(48, 0, 100, NegSqrExp);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

34

1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766

double AS64 = AdaptiveExtSimpsonsRule(64, 0, 100, NegSqrExp);
double AS80 = AdaptiveExtSimpsonsRule(80, ©, 100, NegSqrExp);
double AS96 = AdaptiveExtSimpsonsRule(80, ©, 100, NegSqrExp);
double ES16 = ExtSimpsonsRule(16, ©, 100, NegSqrExp);
double ES32 = ExtSimpsonsRule(32, @, 100, NegSqrExp);
double ES48 = ExtSimpsonsRule(48, @, 100, NegSqrExp);
double ES64 = ExtSimpsonsRule(64, @, 100, NegSqrExp);
double ES80 = ExtSimpsonsRule(80, @, 100, NegSqrExp);
double ES96 = ExtSimpsonsRule(80, @, 100, NegSqrExp);

double exact = 0.5 * sqrt(4.0 * atan(1.9));

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

"My Example\n\n");

"f(x) = er(-x*x) a = @, b = 100\n");

"%s", "Exact Value
"%14.121f\n", exact);
"%s", "Adaptive Ext Simpson's Rule
"%14.121F\n", AS16);

"%s", "Error 16

"%14.121f\n", fabs(AS16 - exact));
"%s", "Adaptive Ext Simpson's Rule
"%14.121F\n", AS32);

"%s", "Error 32

"%14.121f\n", fabs(AS32 - exact));
"%s", "Adaptive Ext Simpson's Rule
"%14.121F\n", AS48);

"%s", "Error 48

"%14.121f\n", fabs(AS48 - exact));
"%s", "Adaptive Ext Simpson's Rule
"%14.121F\n", AS64);

"%s", "Error 64

"%14.121f\n", fabs(AS64 - exact));
"%s", "Adaptive Ext Simpson's Rule
"%14.121F\n", AS80);

"%s", "Error 80

"%14.121f\n", fabs(AS80 - exact));
"%s", "Adaptive Ext Simpson's Rule
"%14.121F\n", AS96);
"%s", "Error 96
"%14.121f\n", fabs(AS96

exact));

"%s", "Extended Simpson's Rule 16
"%14.121F\n", ES16);

"%s", "Error 16

"%14.121f\n", fabs(ES16 - exact));
"%s", "Extended Simpson's Rule 32
"%14.121F\n", ES32);

"%s", "Error 32

"%14.121f\n", fabs(ES32 - exact));
"%s", "Extended Simpson's Rule 48
"%14.121F\n", ES48);

"%s", "Error 48

"%14.121f\n", fabs(ES48 - exact));

16

32

48

64

80

96

")
")
")
")
")
")
")
")
")
")
")
")
")

")
")
")
")
")
")



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818

}

fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,
fprintf_s(out file,

double xsqr(double x)

{
}

double sinl1@1(double x)

{

}

return x * x;

"%s", "Extended Simpson'

"%14.121F\n", ES64);
"%s", "Error 64
"%14.121f\n", fabs(ES64

"%s", "Extended Simpson'

"%14.121F\n", ES80);
"%s", "Error 80
"%14.121f\n", fabs(ES80

"%s", "Extended Simpson'

"%14.121F\n", ES96);
"%s", "Error 96
"%14.121f\n", fabs(ES96
"\n");

double pi = 4.0 * atan(1.0);

return sin(101.0 * pi * x);

double sinl@(double x)

{

}

double pi = 4.0 * atan(1.0);

return (1.9 + sin(10.0 * pi * x));

double abs13(double x)

{
}

return fabs(x - 1.0 / 3.0);

double sinxx(double x)

{

}

if (x 1= 0.0)

return sin(x) / x;

else
return 1.0;

int main()

{

char cwd[256] = { "\@' };
char out_pathname[256] = { "\@" };
FILE* inp_file = NULL, * out_file = NULL;

s Rule 64

- exact));
s Rule 80

- exact));
s Rule 96

- exact));

")
")
")
")
")
")



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

errno_t my_errno = 9;

if (_getcwd(cwd, sizeof(cwd)) == NULL)
{
perror("_getcwd() error");
exit(-1);
}

strcat_s(out_pathname, 256, cwd);
strcat_s(out_pathname, 256, out_filename);

my_errno = fopen_s(&out_file, out_pathname, "w+");

if (my _errno != 0 || out_file == NULL)
exit(errno);

CreateTable7_1(out_file);
fprintf_s(out_file, "\n");
Exercise7_1 1(out_file);
Exercise7_1 2(out_file);
Exercise7_1 3(out_file);

fprintf_s(out_file,
"Exercise 7.1-5\n\n");

Exercise7_1 5(out_file, 16);
Exercise7_1 5(out_file, 24);
Exercise7_1 5(out_file, 32);
Exercise7_1 5(out_file, 48);
Exercise7_1 5(out_file, 64);

Exercise7_2_ 2(out_file);
Exercise7_2_ 3(out_file);
Exercise7_2_ 5(out_file);
Exercise7_2_6(out_file);
Example7_2(out_file);
Example7 2a(out_file);
Example7_3(out_file);
Exercise7_3_4(out_file);
Exercise7_3 9(out_file);
Exercise7_4 3(out_file);
Exercise7_4_4(out_file);
Exercise7_4 5(out_file);
Exercise7_4 _6(out_file);
Exercise7_4 _7(out_file);
Exercise7_4 _8(out_file);
Example7_8(out_file);
Exercise7_5 3(out_file);
Exercise7_5_4(out_file);
fprintf_s(out_file, "Example 7.9\n");
RombergIntegration(
out_file, NegSqrExp, 0.0, 1.9, 2, 6);



C:\Users\james\source\repos\NumDifInt\NumDifInt.c

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903 }

fprintf_s(out_file, "\n");
fprintf_s(out_file, "Exercise 7.7-2 (a)\n");
RombergIntegration(

out_file, xsqr, 0.0, 1.0, 2, 6);
fprintf_s(out_file, "\n");
fprintf_s(out_file, "Exercise 7.7-2 (b)\n");
RombergIntegration(

out_file, sinlel, 0.0, 1.0, 1, 6);
fprintf_s(out_file, "\n");
fprintf_s(out_file, "Exercise 7.7-2 (c)\n");
RombergIntegration(

out_file, sinle, 0.0, 1.0, 1, 6);
fprintf_s(out_file, "\n");
fprintf_s(out_file, "Exercise 7.7-2 (d)\n");
RombergIntegration(

out_file, abs13, 0.0, 1.0, 1, 6);
fprintf_s(out_file, "\n");
fprintf_s(out_file, "Exercise 7.7-2 (d)\n");
RombergIntegration(

out_file, absi13, 0.0, 1.0, 3, 6);
fprintf_s(out_file, "\n");
fprintf_s(out_file, "Exercise 7.7-2 (e)\n");
RombergIntegration(

out_file, sqrt, 0.0, 1.0, 2, 6);
fprintf_s(out_file, "\n");
fprintf_s(out_file, "Exercise 7.7-2 (f)\n");
RombergIntegration(

out_file, sinxx, 0.0, 1.0, 2, 6);
fprintf_s(out_file, "\n");
My Example(out_file);
fclose(out_file);
return 0;



