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// Compa
// by 3Ja
// Compa

#include
#include
#include
#include
using na
using na

long sie

void Cre

{
cout
cout
cout
cout
cout
cout
cout

for

{

rePrimeSieves.cpp (c) Saturday September 14, 2024
mes Pate Williams, IJr.
res the Sieve of Atkin to the Sieve of Eratosthenes

"Sieves.h"
<chrono>
<iomanip>
<iostream>
mespace std::chrono;
mespace std;

ve[SIEVE_SIZE];

ateRuntimeTable()
<< "Runtimes in microseconds:"
<< setw(6) << "Limit";
<< setw(12) << "Atkinl";
<< setw(12) << "Eratol";
<< setw(12) << "Atkin2";
<< setw(12) << "Erato2";
<< endl;

<< endl;

(long limit = 100000; limit <= 250000; limit += 10000)

cout << setw(6) << limit;

auto startl = std::chrono::high resolution_clock::now();

vector<long> slowAtkinPrimes = Sieves::SlowGetAtkinPrimes(limit);

auto stopl = std::chrono::high resolution_clock::now();

auto durationl = std::chrono::duration_cast<microseconds>
(stopl - startl);

auto start2 = std::chrono::high resolution_clock::now();

vector<long> slowEratoPrimes = Sieves::SlowGetEratoPrimes(limit);

auto stop2 = std::chrono::high resolution_clock::now();

auto duration2 = std::chrono::duration_cast<std::chrono::microseconds>
(stop2 - start2);

auto start3 = std::chrono::high resolution_clock::now();

vector<long> fastAtkinPrimes = Sieves::FastGetAtkinPrimes(
limit, sieve);

auto stop3 = std::chrono::high resolution_clock::now();

auto duration3 = std::chrono::duration_cast<std::chrono::microseconds>
(stop3 - start3);

auto start4 = std::chrono::high resolution_clock::now();

vector<long> fastEratoPrimes = Sieves::FastGetEratoPrimes(
limit, sieve);

auto stop4 = std::chrono::high resolution_clock::now();

auto duration4 = std::chrono::duration_cast<std::chrono::microseconds>
(stopd - startd);

cout << setw(12) << durationl.count();

cout << setw(12) << duration2.count();

cout << setw(12) << duration3.count();

cout << setw(12) << durationd.count();
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}

cout << endl;

int main()

{

for (55) {
long option = 0;
cout << "== Menu ==" << endl;

cout << "1 Test prime number generation" << endl;
cout << "2 Create runtimes table" << endl;
cout << "3 Exit" << endl;

cout << "Enter an option: ";
cin >> option;

if (option == 3)
break;

if (option == 1)
{
int limit = ©;
cout << "limit = ";
cin >> limit;
vector<long> slowAtkinPrimes = Sieves::SlowGetAtkinPrimes(limit);
vector<long> slowEratoPrimes = Sieves::SlowGetEratoPrimes(limit);
vector<long> fastAtkinPrimes = Sieves::FastGetAtkinPrimes(
limit, sieve);
vector<long> fastEratoPrimes = Sieves::FastGetEratoPrimes(
limit, sieve);
long sapn = slowAtkinPrimes.size();
long sepn = slowEratoPrimes.size();
long fapn = slowAtkinPrimes.size();
long fepn = slowEratoPrimes.size();
for (int i = @; i < sapn; i++) {
cout << setw(2) << (i + 1) << "\t';
cout << fastAtkinPrimes[i] << '"\t' << fastAtkinPrimes[i] << "\t';
cout << fastEratoPrimes[i] << '\t' << fastEratoPrimes[i] << endl;
}
}
else if (option == 2)
CreateRuntimeTable();
}

return 0;



