
...es\source\repos\ComparePrimeSieves\ComparePrimeSieves.cpp 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// ComparePrimeSieves.cpp (c) Saturday September 14, 2024
// by James Pate Williams, Jr.
// Compares the Sieve of Atkin to the Sieve of Eratosthenes

#include "Sieves.h"
#include <chrono>
#include <iomanip>
#include <iostream>
using namespace std::chrono;
using namespace std;

long sieve[SIEVE_SIZE];

void CreateRuntimeTable()
{
 cout << "Runtimes in microseconds:" << endl;
 cout << setw(6) << "Limit";
 cout << setw(12) << "Atkin1";
 cout << setw(12) << "Erato1";
 cout << setw(12) << "Atkin2";
 cout << setw(12) << "Erato2";
 cout << endl;

 for (long limit = 100000; limit <= 250000; limit += 10000)
 {
 cout << setw(6) << limit;
 auto start1 = std::chrono::high_resolution_clock::now();
 vector<long> slowAtkinPrimes = Sieves::SlowGetAtkinPrimes(limit);
 auto stop1 = std::chrono::high_resolution_clock::now();
 auto duration1 = std::chrono::duration_cast<microseconds>
 (stop1 - start1);
 auto start2 = std::chrono::high_resolution_clock::now();
 vector<long> slowEratoPrimes = Sieves::SlowGetEratoPrimes(limit);
 auto stop2 = std::chrono::high_resolution_clock::now();
 auto duration2 = std::chrono::duration_cast<std::chrono::microseconds>
 (stop2 - start2);
 auto start3 = std::chrono::high_resolution_clock::now();
 vector<long> fastAtkinPrimes = Sieves::FastGetAtkinPrimes(
 limit, sieve);
 auto stop3 = std::chrono::high_resolution_clock::now();
 auto duration3 = std::chrono::duration_cast<std::chrono::microseconds>
 (stop3 - start3);
 auto start4 = std::chrono::high_resolution_clock::now();
 vector<long> fastEratoPrimes = Sieves::FastGetEratoPrimes(
 limit, sieve);
 auto stop4 = std::chrono::high_resolution_clock::now();
 auto duration4 = std::chrono::duration_cast<std::chrono::microseconds>
 (stop4 - start4);
 cout << setw(12) << duration1.count();
 cout << setw(12) << duration2.count();
 cout << setw(12) << duration3.count();
 cout << setw(12) << duration4.count();

...es\source\repos\ComparePrimeSieves\ComparePrimeSieves.cpp 2
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

 cout << endl;
 }
}

int main()
{
 for (;;) {
 long option = 0;
 cout << "== Menu ==" << endl;
 cout << "1 Test prime number generation" << endl;
 cout << "2 Create runtimes table" << endl;
 cout << "3 Exit" << endl;
 cout << "Enter an option: ";
 cin >> option;

 if (option == 3)
 break;

 if (option == 1)
 {
 int limit = 0;
 cout << "limit = ";
 cin >> limit;
 vector<long> slowAtkinPrimes = Sieves::SlowGetAtkinPrimes(limit);
 vector<long> slowEratoPrimes = Sieves::SlowGetEratoPrimes(limit);
 vector<long> fastAtkinPrimes = Sieves::FastGetAtkinPrimes(
 limit, sieve);
 vector<long> fastEratoPrimes = Sieves::FastGetEratoPrimes(
 limit, sieve);
 long sapn = slowAtkinPrimes.size();
 long sepn = slowEratoPrimes.size();
 long fapn = slowAtkinPrimes.size();
 long fepn = slowEratoPrimes.size();
 for (int i = 0; i < sapn; i++) {
 cout << setw(2) << (i + 1) << '\t';
 cout << fastAtkinPrimes[i] << '\t' << fastAtkinPrimes[i] << '\t';
 cout << fastEratoPrimes[i] << '\t' << fastEratoPrimes[i] << endl;
 }
 }
 else if (option == 2)
 CreateRuntimeTable();
 }

 return 0;
}

