...es\source\repos\ComparePrimeSieves\ComparePrimeSieves.cpp

OooNOOTUVTDE WNER

N
W N R

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// Compa
// by 3Ja
// Compa

#include
#include
#include
#include
using na
using na

long sie

void Cre

{
cout
cout
cout
cout
cout
cout
cout

for

{

rePrimeSieves.cpp (c) Saturday September 14, 2024
mes Pate Williams, IJr.
res the Sieve of Atkin to the Sieve of Eratosthenes

"Sieves.h"
<chrono>
<iomanip>
<iostream>
mespace std::chrono;
mespace std;

ve[SIEVE_SIZE];

ateRuntimeTable()
<< "Runtimes in microseconds:"
<< setw(6) << "Limit";
<< setw(12) << "Atkinl";
<< setw(12) << "Eratol";
<< setw(12) << "Atkin2";
<< setw(12) << "Erato2";
<< endl;

<< endl;

(long limit = 100000; limit <= 250000; limit += 10000)

cout << setw(6) << limit;

auto startl = std::chrono::high resolution_clock::now();

vector<long> slowAtkinPrimes = Sieves::SlowGetAtkinPrimes(limit);

auto stopl = std::chrono::high resolution_clock::now();

auto durationl = std::chrono::duration_cast<microseconds>
(stopl - startl);

auto start2 = std::chrono::high resolution_clock::now();

vector<long> slowEratoPrimes = Sieves::SlowGetEratoPrimes(limit);

auto stop2 = std::chrono::high resolution_clock::now();

auto duration2 = std::chrono::duration_cast<std::chrono::microseconds>
(stop2 - start2);

auto start3 = std::chrono::high resolution_clock::now();

vector<long> fastAtkinPrimes = Sieves::FastGetAtkinPrimes(
limit, sieve);

auto stop3 = std::chrono::high resolution_clock::now();

auto duration3 = std::chrono::duration_cast<std::chrono::microseconds>
(stop3 - start3);

auto start4 = std::chrono::high resolution_clock::now();

vector<long> fastEratoPrimes = Sieves::FastGetEratoPrimes(
limit, sieve);

auto stop4 = std::chrono::high resolution_clock::now();

auto duration4 = std::chrono::duration_cast<std::chrono::microseconds>
(stopd - startd);

cout << setw(12) << durationl.count();

cout << setw(12) << duration2.count();

cout << setw(12) << duration3.count();

cout << setw(12) << durationd.count();



...es\source\repos\ComparePrimeSieves\ComparePrimeSieves.cpp

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

}

cout << endl;

int main()

{

for (55) {
long option = 0;
cout << "== Menu ==" << endl;

cout << "1 Test prime number generation" << endl;
cout << "2 Create runtimes table" << endl;
cout << "3 Exit" << endl;

cout << "Enter an option: ";
cin >> option;

if (option == 3)
break;

if (option == 1)
{
int limit = ©;
cout << "limit = ";
cin >> limit;
vector<long> slowAtkinPrimes = Sieves::SlowGetAtkinPrimes(limit);
vector<long> slowEratoPrimes = Sieves::SlowGetEratoPrimes(limit);
vector<long> fastAtkinPrimes = Sieves::FastGetAtkinPrimes(
limit, sieve);
vector<long> fastEratoPrimes = Sieves::FastGetEratoPrimes(
limit, sieve);
long sapn = slowAtkinPrimes.size();
long sepn = slowEratoPrimes.size();
long fapn = slowAtkinPrimes.size();
long fepn = slowEratoPrimes.size();
for (int i = @; i < sapn; i++) {
cout << setw(2) << (i + 1) << "\t';
cout << fastAtkinPrimes[i] << '"\t' << fastAtkinPrimes[i] << "\t';
cout << fastEratoPrimes[i] << '\t' << fastEratoPrimes[i] << endl;
}
}
else if (option == 2)
CreateRuntimeTable();
}

return 0;



