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#include <vector>
#include "Sieves.h"
using namespace std;

vector<long> Sieves::SlowGetAtkinPrimes(long limit)
{
    vector<bool> bsieve;
    vector<long> primes;

    for (long i = 0; i < limit + 1; i++)
         bsieve.push_back(false);

    for (long a = 1; a * a <= limit; a++)
    {
        for (long b = 1; b * b <= limit; b++)
        {
            // Main part of Sieve of Atkin

            long n = (4 * a * a) + (b * b);

            if (n <= limit && (n % 12 == 1 || n % 12 == 5))
                bsieve[n] = bsieve[n] ^ true;

            n = (3 * a * a) + (b * b);

            if (n <= limit && n % 12 == 7)
                bsieve[n] = bsieve[n] ^ true;

            n = (3 * a * a) - (b * b);

            if (a > b && n <= limit && n % 12 == 11)
                bsieve[n] = bsieve[n] ^ true;
        }
    }

    for (long r = 5; r * r <= limit; r++)
    {
        if (bsieve[r])
        {
            for (int i = r * r; i < limit; i += r * r)
                bsieve[i] = false;
        }
    }

    primes.push_back(2);
    primes.push_back(3);

    for (int x = 5; x <= limit; x++)
        if (bsieve[x])
            primes.push_back(x);

    return primes;
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}

vector<long> Sieves::SlowGetEratoPrimes(long limit)
{
    // Sieve of Eratosthenes
    // find all prime numbers
    // less than or equal limit

    vector<bool> bsieve;
    vector<long> primes;

    for (long i = 0; i < limit + 1; i++)
        bsieve.push_back(false);

    int c = 3, i, inc;
    bsieve[2] = true;

    for (i = 3; i <= limit; i++)
        if (i % 2 == 1)
            bsieve[i] = true;
    do
    {
        i = c * c;
        inc = c + c;

        while (i <= limit)
        {
            bsieve[i] = false;

            i += inc;
        }

        c += 2;

        while (!bsieve[c])
            c++;
    } while (c * c <= limit);

    for (i = 2; i <= limit; i++)
        if (bsieve[i])
            primes.push_back(i);

    return primes;
}

long Sieves::GetBit(long i, long sieve[])
{
    long b = i % BITS_PER_LONG;
    long c = i / BITS_PER_LONG;
    return (sieve[c] >> (BITS_PER_LONG_1 - b)) & 1L;
}
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void Sieves::SetBit(long i, long v, long sieve[])
{
    long b = i % BITS_PER_LONG;
    long c = i / BITS_PER_LONG;
    long mask = 1L << (BITS_PER_LONG_1 - b);

    if (v == 1)
        sieve[c] |= mask;
    else
        sieve[c] &= ~mask;
}

vector<long> Sieves::FastGetAtkinPrimes(
    long limit, long sieve[])
{
    long nlongs = limit / BITS_PER_LONG + 2;
    vector<long> primes;

    for (long i = 0; i < nlongs; i++)
        sieve[i] = 0;

    for (long a = 1; a * a <= limit; a++)
    {
        for (long b = 1; b * b <= limit; b++)
        {
            // Main part of Sieve of Atkin

            long n = (4 * a * a) + (b * b);

            if (n <= limit && (n % 12 == 1 || n % 12 == 5))
            {
                long bit = GetBit(n, sieve);
                SetBit(n, bit ^ 1, sieve);
            }

            n = (3 * a * a) + (b * b);

            if (n <= limit && n % 12 == 7)
            {
                long bit = GetBit(n, sieve);
                SetBit(n, bit ^ 1, sieve);
            }

            n = (3 * a * a) - (b * b);

            if (a > b && n <= limit && n % 12 == 11)
            {
                long bit = GetBit(n, sieve);
                SetBit(n, bit ^ 1, sieve);
            }
        }
    }
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    for (long r = 5; r * r <= limit; r++)
    {
        if (GetBit(r, sieve))
        {
            for (long i = r * r; i <= limit; i += r * r)
                SetBit(i, 0, sieve);
        }
    }

    primes.push_back(2);
    primes.push_back(3);

    for (long x = 5; x <= limit; x++)
        if (GetBit(x, sieve))
            primes.push_back(x);

    return primes;
}

vector<long> Sieves::FastGetEratoPrimes(
    long limit, long sieve[])
{
    long c, i, inc, nlongs = limit / BITS_PER_LONG + 1;
    vector<long> primes;

    for (long i = 0; i <  nlongs; i++)
        sieve[i] = 0;

    SetBit(0, 0, sieve);
    SetBit(1, 0, sieve);
    SetBit(2, 1, sieve);

    for (i = 3; i < limit; i++)
        SetBit(i, i & 1, sieve);
    
    c = 3;
    
    do {
        i = c * c, inc = c + c;
        while (i < limit) {
            SetBit(i, 0, sieve);
            i += inc;
        }
        c += 2;
        while (!GetBit(c, sieve)) c++;
    } while (c * c <= limit);
    
    for (i = 2; i <= limit; i++)
        if (GetBit(i, sieve))
            primes.push_back(i);
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    return primes;
}


