
C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

#include <vector>
#include "Sieves.h"
using namespace std;

vector<long> Sieves::SlowGetAtkinPrimes(long limit)
{
 vector<bool> bsieve;
 vector<long> primes;

 for (long i = 0; i < limit + 1; i++)
 bsieve.push_back(false);

 for (long a = 1; a * a <= limit; a++)
 {
 for (long b = 1; b * b <= limit; b++)
 {
 // Main part of Sieve of Atkin

 long n = (4 * a * a) + (b * b);

 if (n <= limit && (n % 12 == 1 || n % 12 == 5))
 bsieve[n] = bsieve[n] ^ true;

 n = (3 * a * a) + (b * b);

 if (n <= limit && n % 12 == 7)
 bsieve[n] = bsieve[n] ^ true;

 n = (3 * a * a) - (b * b);

 if (a > b && n <= limit && n % 12 == 11)
 bsieve[n] = bsieve[n] ^ true;
 }
 }

 for (long r = 5; r * r <= limit; r++)
 {
 if (bsieve[r])
 {
 for (int i = r * r; i < limit; i += r * r)
 bsieve[i] = false;
 }
 }

 primes.push_back(2);
 primes.push_back(3);

 for (int x = 5; x <= limit; x++)
 if (bsieve[x])
 primes.push_back(x);

 return primes;

C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp 2
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

}

vector<long> Sieves::SlowGetEratoPrimes(long limit)
{
 // Sieve of Eratosthenes
 // find all prime numbers
 // less than or equal limit

 vector<bool> bsieve;
 vector<long> primes;

 for (long i = 0; i < limit + 1; i++)
 bsieve.push_back(false);

 int c = 3, i, inc;
 bsieve[2] = true;

 for (i = 3; i <= limit; i++)
 if (i % 2 == 1)
 bsieve[i] = true;
 do
 {
 i = c * c;
 inc = c + c;

 while (i <= limit)
 {
 bsieve[i] = false;

 i += inc;
 }

 c += 2;

 while (!bsieve[c])
 c++;
 } while (c * c <= limit);

 for (i = 2; i <= limit; i++)
 if (bsieve[i])
 primes.push_back(i);

 return primes;
}

long Sieves::GetBit(long i, long sieve[])
{
 long b = i % BITS_PER_LONG;
 long c = i / BITS_PER_LONG;
 return (sieve[c] >> (BITS_PER_LONG_1 - b)) & 1L;
}

C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp 3
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

void Sieves::SetBit(long i, long v, long sieve[])
{
 long b = i % BITS_PER_LONG;
 long c = i / BITS_PER_LONG;
 long mask = 1L << (BITS_PER_LONG_1 - b);

 if (v == 1)
 sieve[c] |= mask;
 else
 sieve[c] &= ~mask;
}

vector<long> Sieves::FastGetAtkinPrimes(
 long limit, long sieve[])
{
 long nlongs = limit / BITS_PER_LONG + 2;
 vector<long> primes;

 for (long i = 0; i < nlongs; i++)
 sieve[i] = 0;

 for (long a = 1; a * a <= limit; a++)
 {
 for (long b = 1; b * b <= limit; b++)
 {
 // Main part of Sieve of Atkin

 long n = (4 * a * a) + (b * b);

 if (n <= limit && (n % 12 == 1 || n % 12 == 5))
 {
 long bit = GetBit(n, sieve);
 SetBit(n, bit ^ 1, sieve);
 }

 n = (3 * a * a) + (b * b);

 if (n <= limit && n % 12 == 7)
 {
 long bit = GetBit(n, sieve);
 SetBit(n, bit ^ 1, sieve);
 }

 n = (3 * a * a) - (b * b);

 if (a > b && n <= limit && n % 12 == 11)
 {
 long bit = GetBit(n, sieve);
 SetBit(n, bit ^ 1, sieve);
 }
 }
 }

C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp 4
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

 for (long r = 5; r * r <= limit; r++)
 {
 if (GetBit(r, sieve))
 {
 for (long i = r * r; i <= limit; i += r * r)
 SetBit(i, 0, sieve);
 }
 }

 primes.push_back(2);
 primes.push_back(3);

 for (long x = 5; x <= limit; x++)
 if (GetBit(x, sieve))
 primes.push_back(x);

 return primes;
}

vector<long> Sieves::FastGetEratoPrimes(
 long limit, long sieve[])
{
 long c, i, inc, nlongs = limit / BITS_PER_LONG + 1;
 vector<long> primes;

 for (long i = 0; i < nlongs; i++)
 sieve[i] = 0;

 SetBit(0, 0, sieve);
 SetBit(1, 0, sieve);
 SetBit(2, 1, sieve);

 for (i = 3; i < limit; i++)
 SetBit(i, i & 1, sieve);

 c = 3;

 do {
 i = c * c, inc = c + c;
 while (i < limit) {
 SetBit(i, 0, sieve);
 i += inc;
 }
 c += 2;
 while (!GetBit(c, sieve)) c++;
 } while (c * c <= limit);

 for (i = 2; i <= limit; i++)
 if (GetBit(i, sieve))
 primes.push_back(i);

C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp 5
209
210

 return primes;
}

