Users\james\source\repos\ComparePrimeSieves\Sieves.cpp

C:\
1
2
3
a
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

#include <vector>
#include "Sieves.h"
using namespace std;

vector<long> Sieves::SlowGetAtkinPrimes(long limit)

{

vector<bool> bsieve;
vector<long> primes;

for (long i = @; i < limit + 1; i++)
bsieve.push_back(false);

for (long a = 1; a * a <= limit; a++)

{
for (long b = 1; b * b <= limit; b++)
{
// Main part of Sieve of Atkin
longn=(4 *a*a)+ (b *b);
if (n <= limit && (n % 12 == 1 || n % 12 == 5))
bsieve[n] = bsieve[n] ~ true;
n=(3*a*a)+ (b *b);
if (n <= limit && n % 12 == 7)
bsieve[n] = bsieve[n] ~ true;
n=(3*a*a)- (b*b);
if (a > b && n <= limit && n % 12 == 11)
bsieve[n] = bsieve[n] ~ true;
}
}
for (long r = 5; r * r <= limit; r++)
{
if (bsieve[r])
{
for (int i =r *r; i < limit; 1 +=r * pr)
bsieve[i] = false;
}
}

primes.push_back(2);
primes.push_back(3);

for (int x = 5; x <= limit; Xx++)
if (bsieve[x])

primes.push_back(x);

return primes;

C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp

53}

54

55 vector<long> Sieves::SlowGetEratoPrimes(long limit)
56 {

57 // Sieve of Eratosthenes

58 // find all prime numbers

59 // less than or equal limit
60

61 vector<bool> bsieve;

62 vector<long> primes;

63

64 for (long i = @; i < limit + 1; i++)
65 bsieve.push_back(false);
66

67 int ¢ = 3, i, inc;

68 bsieve[2] = true;

69

70 for (i = 3; i <= limit; i++)
71 if (i %2 ==1)

72 bsieve[i] = true;

73 do

74 {

75 i=1c*c;

76 inc = c + c;

77

78 while (i <= limit)

79 {

80 bsieve[i] = false;
81

82 i += inc;

83 }

84

85 C += 2;

86

87 while (!bsieve[c])

88 C++;

89 } while (c * c <= limit);

90

91 for (i = 2; i <= limit; i++)
92 if (bsieve[i])

93 primes.push_back(i);
94

95 return primes;

9% }

97

98 1long Sieves::GetBit(long i, long sieve[])
99 {

100 long b = i % BITS_PER_LONG;
101 long ¢ = i / BITS_PER_LONG;
102 return (sieve[c] >> (BITS_PER_LONG_1 - b)) & 1L;
103 }

104

C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp

105 void Sieves::SetBit(long i, long v, long sieve[])

106 {

107 long b = i % BITS_PER_LONG;

108 long ¢ = i / BITS_PER_LONG;

109 long mask = 1L << (BITS_PER_LONG_1 - b);
110

111 if (v == 1)

112 sieve[c] |= mask;

113 else

114 sieve[c] &= ~mask;

115 }

116

117 vector<long> Sieves::FastGetAtkinPrimes(

118 long limit, long sieve[])

119 {

120 long nlongs = limit / BITS_PER_LONG + 2;
121 vector<long> primes;

122

123 for (long i = @; i < nlongs; i++)

124 sieve[i] = ©;

125

126 for (long a = 1; a * a <= limit; a++)
127 {

128 for (long b = 1; b * b <= limit; b++)
129 {

130 // Main part of Sieve of Atkin
131

132 longn=(4 *a*a)+ (b *b);
133

134 if (n <= limit && (n % 12 == 1 || n % 12 == 5))
135 {

136 long bit = GetBit(n, sieve);
137 SetBit(n, bit ~ 1, sieve);
138 }

139

140 n=(3*a*a)+ (b *b);

141

142 if (n <= limit && n % 12 == 7)
143 {

144 long bit = GetBit(n, sieve);
145 SetBit(n, bit ~ 1, sieve);
146 }

147

148 n=(3*a*a)- (b*b);

149

150 if (a > b && n <= limit && n % 12 == 11)
151 {

152 long bit = GetBit(n, sieve);
153 SetBit(n, bit ~ 1, sieve);
154 }

155 }

156 }

C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

}

for (long r = 5; r * r <= limit; r++)

{
if (GetBit(r, sieve))
{
for (long i =r * r; i <= limit; i 4=1r * r)
SetBit(i, @, sieve);
}
}

primes.push_back(2);
primes.push_back(3);

for (long x = 5; x <= limit; x++)
if (GetBit(x, sieve))

primes.push_back(x);

return primes;

vector<long> Sieves::FastGetEratoPrimes(

{

long limit, long sieve[])

long ¢, i, inc, nlongs = limit / BITS_PER_LONG + 1;
vector<long> primes;

for (long i = @; i < nlongs; i++)
sieve[i] = ©;

SetBit(@, @, sieve);
SetBit(1, @, sieve);
SetBit(2, 1, sieve);

for (i = 3; i < limit; i++)
SetBit(i, i & 1, sieve);

c = 3;

do {
i=c*c, inc =c + c;
while (i < limit) {
SetBit(i, @, sieve);
i += inc;
}
C += 2;
while (!GetBit(c, sieve)) c++;
} while (c * c <= limit);

for (i = 2; i <= limit; i++)
if (GetBit(i, sieve))
primes.push_back(i);

C:\Users\james\source\repos\ComparePrimeSieves\Sieves.cpp

209 return primes;
210 }

