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1 // SimplexAlgorithm.cpp (c) Thursday, October 24, 2024
2 // by James Pate Williams, Jr., BA, BS, MSWE, PhD
3 // See "Elementary Numerical Analysis : An Algorithmic
4 // Approach" by S.D. Conte and Carl de Boor (c) 1980
5 // Third Edition
6
7 #include <stdio.h>
8 #include <iostream>
9 #include <limits>
10 #include <vector>
11 using namespace std;
12
13 class Simplex {
14 public:
15 Simplex(
16 const vector<vector<double>>& A,
17 const vector<double>& b,
18 const vector<double>& c)
19 : A(A), b(b), c(c), m(b.size()), n(c.size()),
20 tableau(m + 1, vector<double>(n + m + 1)) {
21 initializeTableau();
22 }
23
24 void solve() {
25 while (true) {
26 int pivotCol = findPivotColumn();
27 if (pivotCol == -1) break; // Optimal solution found
28
29 int pivotRow = findPivotRow(pivotCol);
30 if (pivotRow == -1) {
31 cout << "Unbounded solution" << endl;
32 return;
33 }
34
35 pivot(pivotRow, pivotCol);
36 }
37 printSolution();
38 }
39
40 private:
41 vector<vector<double>> A;
42 vector<double> b;
43 vector<double> c;
44 int m, n;
45 vector<vector<double>> tableau;
46
47 void initializeTableau() {
48 for (int i =0; i <m; ++i) {
49 for (int j =0; j < n; ++j) {
50 tableau[i][j] = A[i][]];
51 }
52 tableau[i][n + i] = 1.0;
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}

tableau[i][n + m] = b[i];

}

for (int j = @; j < n; ++j) {
tableau[m][j] = -c[j];

}

int findPivotColumn() {

}

int pivotCol = -1;
double minValue = 0.0;
for (int j =0; j < n + m; ++j) {
if (tableau[m][j] < minValue) {
minValue = tableau[m][7j];
pivotCol = j;

}
}

return pivotCol;

int findPivotRow(int pivotCol) {

}

int pivotRow = -1;
double minRatio = numeric_limits<double>::infinity();
for (int i =0; i <m; ++i) {
if (tableau[i][pivotCol] > @) {
double ratio = tableau[i][n + m] / tableau[i][pivotCol];
if (ratio < minRatio) {
minRatio = ratio;
pivotRow = i;

}
}

return pivotRow;

void pivot(int pivotRow, int pivotCol) {

}

double pivotValue = tableau[pivotRow][pivotCol];
for (int j =0; j <=n + m; ++j) {
tableau[pivotRow][j] /= pivotValue;
}
for (int i =0; i <=m; ++1i) {
if (i !'= pivotRow) {
double factor = tableau[i][pivotCol];
for (int j =0; j <=n + m; ++j) {
tableau[i][j] -= factor * tableau[pivotRow][j];
}

void printSolution() {

vector<double> solution(n, 0.0);
for (int i =0; i <m; ++i) {
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105 bool isBasic = true;

106 int basicVar = -1;

107 for (int j =0; j < n; ++j) {
108 if (tableau[i][j] == 1.0) {
109 if (basicvar == -1) {
110 basicVar = j;

111 }

112 else {

113 isBasic = false;
114 break;

115 }

116 }

117 else if (tableau[i][j] != @0.0) {
118 isBasic = false;

119 break;

120 }

121 }

122 if (isBasic && basicvar != -1) {
123 solution[basicVar] = tableau[i][n + m];
124 }

125 }

126 cout << "Optimal solution: ";

127 for (double x : solution) {

128 cout << x << " "

129 }

130 cout << endl;

131 }

132 };

133

134 class SteepestDescent

135 {

136 public:

137 SteepestDescent(

138 const vector<double> x9) :

139 x0(x0), n(x0.size())

140 {1}

141 double F(vector<double> x);

142 vector<double> gradient(vector<double> x);
143 double HillClimber(

144 double tolerance,

145 int m, int p, int seed);

146 vector<double> getxm() {

147 return xm;

148 };

149 private:

150 int n;

151 vector<double> uv, x0, xm;

152 };

153

154 double SteepestDescent::HillClimber(

155 double tolerance,

156 int m, int p, int seed) {
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157 bool satisfied = false;

158 double ts = 0;

159 vector<double> tv(p, 0.0), uv;

160 vector<double> gv(p, 0.0);

161 vector<vector<double>> xv;

162

163 srand(seed);

164 uv = gradient(xe);

165

166 for (int 1 =0; i < p; i++) {

167 tv[i] = (double)rand() / RAND_MAX;
168 xm.clear();

169

170 for (int j = 0; j < n; j++)

171 xm.push_back(x0[j] - tv[i] * uv[j]);
172

173 gv[i] = F(xm);

174 xv.push_back(xm);

175 }

176

177 for (int i = 1; i <= m; i++)

178 {

179 int parentl = rand() % p;

180 int parent2 = rand() % p;

181 int parent® = tv[parentl] > tv[parent2] ?
182 parentl : parent2;

183 double gt = @, ts = (double)rand() / RAND_MAX;
184

185 ts = 0.5 * (double)rand() / RAND_MAX;
186 uv = gradient(xe);

187

188 for (int j = 0; j < n; j++)

189 xm[j] = x0[j] - ts * uv[j];

190

191 gt = F(xm);

192

193 satisfied = true;

194

195 for (int j = 0; satisfied & j < n; j++)
196 satisfied = fabs(uv[j]) < tolerance;
197

198 if (satisfied && ts > 0)

199 break;

200

201 for (int j = 0; j < n; j++)

202 x0[j] = xm[Jj];

203

204 double maxtv = DBL_MIN;

205

206 for (int j = 0; j < p; j++)

207 if (tv[j] > maxtv)

208 maxtv = tv[j];
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209

210 vector<int> index;

211

212 for (int j = 0; j < p; j++)

213 if (maxtv == tv[j])

214 index.push_back(j);

215

216 int replace = index[rand() % index.size()];
217

218 tv[replace] = ts;

219 }

220

221 if (!satisfied) {

222 ts = DBL_MAX;

223

224 for (int i = 0; i < p; i++)

225 {

226 if (tv[i] < ts)

227 ts = tv[i];

228 }

229

230 for (int i = 0; i < n; i++)

231 xm[i] = x0[i] - ts * uv[i];
232 }

233

234 return ts;

235 }

236

237 double SteepestDescent::F(vector<double> x) {

238 double x1 = x[0];

239 double x2 = x[1];

240

241 return x1 * x1 * x1 + x2 * x2 * x2 -

242 2.0 * x1 * x1 + 3.0 * x2 * x2 - 8.0;
243 '}

244

245 vector<double> SteepestDescent::gradient(vector<double> x) {
246 double x1 = x[0];

247 double x2 = x[1];

248 vector<double> grad(x.size(), 0.9);

249 grad[@] = 3.0 * x1 * x1 - 4.0 * x1;

250 grad[1] = 3.0 * x2 * x2 + 6.0 * x2;

251 return grad;

252}

253

254 class Jacobian {

255 public:

256 Jacobian(

257 vector<double> x, vector<double> f,
258 double(*di)(int),

259 vector<double>(*func)(int, vector<double>)) :

260 x(x), f(f), n(x.size())
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261 {

262 // x is the n-dimensional point vector
263 // f is the n-dimensional function vector
264 // func is an n-dimensional function
265 this->di = di;

266 this->func = func;

267 }

268 void CalculateJacobianMatrix(double** jac);
269 double(*di) (int);

270 vector<double>(*func)(int, vector<double>);
271 private:

272 int n;

273 vector<double> f, x;

274 };

275

276 void Jacobian::CalculateJacobianMatrix(double** jac)
277 A

278 vector<double> f1(n, 9);

279

280 for (int i =0; i < n; i++)
281 {

282 double step = di(i);

283 double aid = x[i];

284

285 x[i] = aid + step;

286 step = 1.0 / step;

287 f1 = func(n, x);

288

289 for (int j = 0; j < n; j++)
290 jac[JI[i] = (f1[3] - F[J]) * step;
291

292 x[i] = aid;

293 }

294}

295

296 class NewtonsMethod

297 {

298 public:

299 NewtonsMethod (

300 const vector<double> x0,
301 double(*di)(int),

302 vector<double>(*func)(int, vector<double>))
303 x0(x0), n(x0.size())

304 {

305 this->di = di;

306 this->func = func;

307 };

308 vector<double> NewtonFunction(
309 int n, vector<double> x);
310 long Solve(

311 double epsilon,

312 vector<double> 1,
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vector<double> x1,
int jMax, long maxIt);
private:

int n;
vector<double> f, x0, x1;
double(*di) (int);
vector<double>(*func)(int, vector<double>);
void DupColVec(

int 1, int u, int j, double** a, double b[]);
void ICCol(int 1, int u, int i, int j, double** a);
void ICRow(int 1, int u, int i, int j, double** a);
double MatMat(

int 1, int u, int i, int j, double** a, double** b);
double MatTam(

int 1, int u, int i, int j, double** a, double** b);
void Dec(double** a, int n, double aux[], int p[]);
void Inv(double** a, int n, int p[]);
void DecInv(double** a, int n);
double VecNorm2(int n, double v[]);
void MatVecMul(

int n, double a[], double** b, double v[]);

1

void NewtonsMethod: :DupColVec(
int 1, int u, int j, double** a, double b[]) {
for (; 1 < u; 1++)
a[1][3] = b[1];
}

void NewtonsMethod: :ICCol(
int 1, int u, int i, int j, double** a) {
for (; 1 < u; 1++)

{
double r = a[l][i];
a[1][i] = a[1][]];
a[11[3] = r;

}

}

void NewtonsMethod::ICRow(int 1, int u, int i, int j, double** a) {
for (; 1 < u; 1++)

{
double r = a[i][1];
a[i][1] = a[Jjl[1];
alJl[1] = r;

}

}

double NewtonsMethod: :MatMat(
int 1, int u, int i, int j, double** a, double** b)
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365 {

366 double s = 0.0;

367

368 for (int k = 1; k < u; k++)
369 s += a[i][k] * b[k][]];
370

371 return s;

372}

373

374 double NewtonsMethod::MatTam(
375 int 1, int u, int i, int j, double** a, double** b)
376 {

377 double s = 0.0;

378

379 for (int k = 1; k < u; k++)
380 s += a[i][k] * b[J][k];
381

382 return s;

383 }

384

385 void NewtonsMethod: :Dec(

386 double** a, int n, double aux[], int p[])
387 {

388 double eps, r, s;

389 int k, pk = 0;

390 vector<double> v(n, 0);

391

392 r=-1.0;

393

394 for (int 1 =0; i < n; i++)
395 {

396 s = sgrt(MatTam(@, n, i, i, a, a));
397

398 if (s > r)

399 r=s;

400

401 v[i] = 1.0 / s;

402 }

403

404 eps = aux[2] * r;

405

406 int d = 1;

407

408 for (k = ©; k < n; k++)

409 {

410 int k1;

411

412 r=-1.0;

413 ki =k - 1;

414

415 for (int i = k; i < n; i++)

416 {
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417 a[il[k] -= MatMat(e, ki1, i, k, a, a);
418 s = fabs(a[i][k]) * v[i];
419

420 if (s > r)

421 {

422 r=-s;

423 pk = ij;

424 }

425 }

426

427 p[k] = pk;

428 v[pk] = v[k];

429 s = a[pk][k];

430

431 if (fabs(s) < eps)

432 break;

433

434 if (s < 0.0)

435 d = -d;

436

437 if (pk != k)

438 {

439 d = -d;

440 ICRow(@, n, k, pk, a);
441 }

442

443 for (int i = k + 1; i < n; i++)
444 a[k][i] = (a[k][i] - MatMat(e, ki1, k, i, a, a)) / s;
445 }

446

447 aux[e] = d;

448 aux[2] = k - 1.0;

449 }

450

451 void NewtonsMethod::Inv(double** a, int n, int p[])
452 {

453 double r;

454 int j, k, ki;

455 vector<double> v(n, 0);

456

457 for (k = n - 1; k >= 0; k--)

458 {

459 ki =k + 1;

460

461 for (j =n-1; j >=k1; j--)
462 {

463 a[jllk1] = v[3i];

464 v[j] = -MatMat(k1l, n, k, j, a, a);
465 }

466

467 r = a[k][k];

468
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469 for (j =n-1; j >=k1; j--)
470 {

471 a[k][3] = v[3l;

472 v[j] = -MatMat(k1, n, j, k, a, a) / r;
473 }

474

475 vik] = (1.0 - MatMat(kl, n, k, k, a, a)) / r;
476 }

477

478 DupColvec(@®, n, @, a, v.data());
479

480 for (k = n - 2; k >=0; k--)

481 {

482 ki = p[k];

483

484 if (k1 != k)

485 ICCol(o, n, k, ki, a);
486 }

487 }

488

489 void NewtonsMethod::DecInv(double** a, int n)
490 {

491 double aux[3] = { };

492 vector<int> p(n, 0);

493

494 aux[@] = 1.0e-10;

495

496 Dec(a, n, aux, p.data());

497

498 if (aux[2] == n)

499 Inv(a, n, p.data());

500 }

501

502 double NewtonsMethod::VecNorm2(int n, double v[])
503 {

504 double s = 0.0;

505

506 for (int 1 =0; i < n; i++)

507 s += v[i] * v[i];

508

509 return sqrt(s);

510 }

511

512 void NewtonsMethod: :MatVecMul(

513 int n, double a[], double** b, double v[])
514 {

515 for (int 1 =0; i < n; i++)

516 {

517 double s = ©;

518

519 for (int j = 0; j < n; j++)

520 s += b[i][j] * v[]l;
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521

522 a[i] = s;

523 }

524}

525

526 long NewtonsMethod: :Solve(

527 double epsilon,

528 vector<double> 1,

529 vector<double> x1,

530 int jMax, long maxIt)

531 {

532 vector<double> @ = func(n, x0);

533 vector<double> h(n, @), g(n, 0);

534 double** jac = new double* [n];

535

536 for (int i =0; i < n; i++)

537 jac[i] = new double[n];

538

539 int i, j;

540 long iterations = 0;

541

542 do

543 {

544 Jacobian jacobian(xe, f@, di, func);
545 jacobian.CalculateJacobianMatrix(jac);
546 DecInv(jac, n);

547 MatVecMul(n, h.data(), jac, f@.data());
548

549 for (int k = 0; k < n; k++)

550 h[k] = -h[k];

551

552 double n@ = VecNorm2(n, f@.data()), ni;
553

554 for (j = ©; j < jMax; j++)

555 {

556 for (int k = @; k < n; k++)

557 {

558 g[k] = h[k] / pow(2.9, (double)j);
559 x1[k] = x0[k] + g[k];

560 }

561

562 f1 = func(n, x1);

563

564 nl = VecNorm2(n, fl.data());

565

566 if (n1 < no)

567 {

568 i=;

569 break;

570 }

571 }

572
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if (j == jMax)
return maxIt;

char buffer[1024] = { }, line[128] = { };
double norm2 = VecNorm2(n, f@.data());
double norml = 0;

for (int i = 0; i < n; i++)
norml += fabs(f0[i]);

buffer[@] = "\0';

sprintf_s(line, 127, "%31d\t", iterations + 1);
strcat_s(buffer, line);

for (int i =0; i < n; i++) {
sprintf_s(line, 127, "%12.101f\t", x0[i]);
strcat_s(buffer, line);

}

sprintf_s(line, 127, "%17.10e\t%17.10e", norml,
strcat_s(buffer, line);

cout << buffer << endl;

if (norm2 < epsilon)
return iterations;

iterations++;

for (int k = 0; k < n; k++)
{

fo[k]
x0[k]

f1[k];
x1[k];

}

} while (iterations < maxIt);

return iterations;

}
double di(int i)
{
return 0.00000001;
}

vector<double> NewtonFunction(
int n, vector<double> x)

{

vector<double> f(n, 9);

for (int 1 =0; i < n; i++)

{

norm2);
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int

if (i == e)

f[i] = x[1 + 1] * x[1i + 1] - 3.0 * x[i] * x[i];

else if (i < n - 1)
f[i] = x[1 - 1] * x[1 - 1] +
x[1 - 1] * x[1 + 1] + x[1 + 1] * x[1 + 1]
- 3.0 * x[i] * x[i];

else
f[i] = x[1 - 1] * x[1 - 1] + x[1i - 1] +
1.0 - 3.0 * x[i] * x[i];

}

return f;

main() {
vector<vector<double>> A = {
{2, 1},
{1, 1}
s
vector<double> b
vector<double> ¢

{ 20, 16 };
{3,213

Simplex simplex(A, b, c);

cout << "Simplex Solution" << endl << endl;
simplex.solve();

cout << endl;

double tolerance = 1.0e-15;
int m = 100000, n = 2;
vector<double> x0(2, 9), xm;

x0[0]
x0[1]

+1;
_1;

SteepestDescent sd(x0);

double ts = sd.HillClimber(
tolerance, m, 25, 1);

cout << "Steepest Descent Solution" << endl;
cout << endl;

for (int i =0; i < n; i++)

{
if (fabs(sd.getxm()[i]) < tolerance)
sd.getxm()[i] = ©;
cout << "x[" << 1 << "] =" << sd.getxm()[i] <<
}

cout << endl;

endl;
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698 }

n = 3;
vector<double> f1(n, @), yo(n, 0.9), yl(n, 0);

for (int i = 0; i < n; i++)
yo[i] = (i + 1.0) / (n + 1.9);

NewtonsMethod nm(y@, di, NewtonFunction);

int jMax = 100;
long maxIt = 1000;

cout << "Newton's Method for a System" << endl;

cout << endl;

cout << "Its\t";

cout << "x@\t\txI\t\tx2\t\t Norm-1\t\t\t Norm-2" << endl;
cout << endl;

long iterations = nm.Solve(
1.0e-15, f1, yl, jMax, maxIt);

return 0;



