...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

1 // SimplexAlgorithm.cpp (c) Thursday, October 24, 2024
2 // by James Pate Williams, Jr., BA, BS, MSWE, PhD
3 // See "Elementary Numerical Analysis : An Algorithmic
4 // Approach" by S.D. Conte and Carl de Boor (c) 1980
5 // Third Edition
6
7 #include <stdio.h>
8 #include <iostream>
9 #include <limits>
10 #include <vector>
11 using namespace std;
12
13 class Simplex {
14 public:
15 Simplex(
16 const vector<vector<double>>& A,
17 const vector<double>& b,
18 const vector<double>& c)
19 : A(A), b(b), c(c), m(b.size()), n(c.size()),
20 tableau(m + 1, vector<double>(n + m + 1)) {
21 initializeTableau();
22 }
23
24 void solve() {
25 while (true) {
26 int pivotCol = findPivotColumn();
27 if (pivotCol == -1) break; // Optimal solution found
28
29 int pivotRow = findPivotRow(pivotCol);
30 if (pivotRow == -1) {
31 cout << "Unbounded solution" << endl;
32 return;
33 }
34
35 pivot(pivotRow, pivotCol);
36 }
37 printSolution();
38 }
39
40 private:
41 vector<vector<double>> A;
42 vector<double> b;
43 vector<double> c;
44 int m, n;
45 vector<vector<double>> tableau;
46
47 void initializeTableau() {
48 for (int i =0; i <m; ++i) {
49 for (int j =0; j < n; ++j) {
50 tableau[i][j] = A[i][]];
51 }
52 tableau[i][n + i] = 1.0;

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

}

tableau[i][n + m] = b[i];

}

for (int j = @; j < n; ++j) {
tableau[m][j] = -c[j];

}

int findPivotColumn() {

}

int pivotCol = -1;
double minValue = 0.0;
for (int j =0; j < n + m; ++j) {
if (tableau[m][j] < minValue) {
minValue = tableau[m][7j];
pivotCol = j;

}
}

return pivotCol;

int findPivotRow(int pivotCol) {

}

int pivotRow = -1;
double minRatio = numeric_limits<double>::infinity();
for (int i =0; i <m; ++i) {
if (tableau[i][pivotCol] > @) {
double ratio = tableau[i][n + m] / tableau[i][pivotCol];
if (ratio < minRatio) {
minRatio = ratio;
pivotRow = i;

}
}

return pivotRow;

void pivot(int pivotRow, int pivotCol) {

}

double pivotValue = tableau[pivotRow][pivotCol];
for (int j =0; j <=n + m; ++j) {
tableau[pivotRow][j] /= pivotValue;
}
for (int i =0; i <=m; ++1i) {
if (i !'= pivotRow) {
double factor = tableau[i][pivotCol];
for (int j =0; j <=n + m; ++j) {
tableau[i][j] -= factor * tableau[pivotRow][j];
}

void printSolution() {

vector<double> solution(n, 0.0);
for (int i =0; i <m; ++i) {

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

105 bool isBasic = true;

106 int basicVar = -1;

107 for (int j =0; j < n; ++j) {
108 if (tableau[i][j] == 1.0) {
109 if (basicvar == -1) {
110 basicVar = j;

111 }

112 else {

113 isBasic = false;
114 break;

115 }

116 }

117 else if (tableau[i][j] != @0.0) {
118 isBasic = false;

119 break;

120 }

121 }

122 if (isBasic && basicvar != -1) {
123 solution[basicVar] = tableau[i][n + m];
124 }

125 }

126 cout << "Optimal solution: ";

127 for (double x : solution) {

128 cout << x << " "

129 }

130 cout << endl;

131 }

132 };

133

134 class SteepestDescent

135 {

136 public:

137 SteepestDescent(

138 const vector<double> x9) :

139 x0(x0), n(x0.size())

140 {1}

141 double F(vector<double> x);

142 vector<double> gradient(vector<double> x);
143 double HillClimber(

144 double tolerance,

145 int m, int p, int seed);

146 vector<double> getxm() {

147 return xm;

148 };

149 private:

150 int n;

151 vector<double> uv, x0, xm;

152 };

153

154 double SteepestDescent::HillClimber(

155 double tolerance,

156 int m, int p, int seed) {

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

157 bool satisfied = false;

158 double ts = 0;

159 vector<double> tv(p, 0.0), uv;

160 vector<double> gv(p, 0.0);

161 vector<vector<double>> xv;

162

163 srand(seed);

164 uv = gradient(xe);

165

166 for (int 1 =0; i < p; i++) {

167 tv[i] = (double)rand() / RAND_MAX;
168 xm.clear();

169

170 for (int j = 0; j < n; j++)

171 xm.push_back(x0[j] - tv[i] * uv[j]);
172

173 gv[i] = F(xm);

174 xv.push_back(xm);

175 }

176

177 for (int i = 1; i <= m; i++)

178 {

179 int parentl = rand() % p;

180 int parent2 = rand() % p;

181 int parent® = tv[parentl] > tv[parent2] ?
182 parentl : parent2;

183 double gt = @, ts = (double)rand() / RAND_MAX;
184

185 ts = 0.5 * (double)rand() / RAND_MAX;
186 uv = gradient(xe);

187

188 for (int j = 0; j < n; j++)

189 xm[j] = x0[j] - ts * uv[j];

190

191 gt = F(xm);

192

193 satisfied = true;

194

195 for (int j = 0; satisfied & j < n; j++)
196 satisfied = fabs(uv[j]) < tolerance;
197

198 if (satisfied && ts > 0)

199 break;

200

201 for (int j = 0; j < n; j++)

202 x0[j] = xm[Jj];

203

204 double maxtv = DBL_MIN;

205

206 for (int j = 0; j < p; j++)

207 if (tv[j] > maxtv)

208 maxtv = tv[j];

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

209

210 vector<int> index;

211

212 for (int j = 0; j < p; j++)

213 if (maxtv == tv[j])

214 index.push_back(j);

215

216 int replace = index[rand() % index.size()];
217

218 tv[replace] = ts;

219 }

220

221 if (!satisfied) {

222 ts = DBL_MAX;

223

224 for (int i = 0; i < p; i++)

225 {

226 if (tv[i] < ts)

227 ts = tv[i];

228 }

229

230 for (int i = 0; i < n; i++)

231 xm[i] = x0[i] - ts * uv[i];
232 }

233

234 return ts;

235 }

236

237 double SteepestDescent::F(vector<double> x) {

238 double x1 = x[0];

239 double x2 = x[1];

240

241 return x1 * x1 * x1 + x2 * x2 * x2 -

242 2.0 * x1 * x1 + 3.0 * x2 * x2 - 8.0;
243 '}

244

245 vector<double> SteepestDescent::gradient(vector<double> x) {
246 double x1 = x[0];

247 double x2 = x[1];

248 vector<double> grad(x.size(), 0.9);

249 grad[@] = 3.0 * x1 * x1 - 4.0 * x1;

250 grad[1] = 3.0 * x2 * x2 + 6.0 * x2;

251 return grad;

252}

253

254 class Jacobian {

255 public:

256 Jacobian(

257 vector<double> x, vector<double> f,
258 double(*di)(int),

259 vector<double>(*func)(int, vector<double>)) :

260 x(x), f(f), n(x.size())

...\james\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

261 {

262 // x is the n-dimensional point vector
263 // f is the n-dimensional function vector
264 // func is an n-dimensional function
265 this->di = di;

266 this->func = func;

267 }

268 void CalculateJacobianMatrix(double** jac);
269 double(*di) (int);

270 vector<double>(*func)(int, vector<double>);
271 private:

272 int n;

273 vector<double> f, x;

274 };

275

276 void Jacobian::CalculateJacobianMatrix(double** jac)
277 A

278 vector<double> f1(n, 9);

279

280 for (int i =0; i < n; i++)
281 {

282 double step = di(i);

283 double aid = x[i];

284

285 x[i] = aid + step;

286 step = 1.0 / step;

287 f1 = func(n, x);

288

289 for (int j = 0; j < n; j++)
290 jac[JI[i] = (f1[3] - F[J]) * step;
291

292 x[i] = aid;

293 }

294}

295

296 class NewtonsMethod

297 {

298 public:

299 NewtonsMethod (

300 const vector<double> x0,
301 double(*di)(int),

302 vector<double>(*func)(int, vector<double>))
303 x0(x0), n(x0.size())

304 {

305 this->di = di;

306 this->func = func;

307 };

308 vector<double> NewtonFunction(
309 int n, vector<double> x);
310 long Solve(

311 double epsilon,

312 vector<double> 1,

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

vector<double> x1,
int jMax, long maxIt);
private:

int n;
vector<double> f, x0, x1;
double(*di) (int);
vector<double>(*func)(int, vector<double>);
void DupColVec(

int 1, int u, int j, double** a, double b[]);
void ICCol(int 1, int u, int i, int j, double** a);
void ICRow(int 1, int u, int i, int j, double** a);
double MatMat(

int 1, int u, int i, int j, double** a, double** b);
double MatTam(

int 1, int u, int i, int j, double** a, double** b);
void Dec(double** a, int n, double aux[], int p[]);
void Inv(double** a, int n, int p[]);
void DecInv(double** a, int n);
double VecNorm2(int n, double v[]);
void MatVecMul(

int n, double a[], double** b, double v[]);

1

void NewtonsMethod: :DupColVec(
int 1, int u, int j, double** a, double b[]) {
for (; 1 < u; 1++)
a[1][3] = b[1];
}

void NewtonsMethod: :ICCol(
int 1, int u, int i, int j, double** a) {
for (; 1 < u; 1++)

{
double r = a[l][i];
a[1][i] = a[1][]];
a[11[3] = r;

}

}

void NewtonsMethod::ICRow(int 1, int u, int i, int j, double** a) {
for (; 1 < u; 1++)

{
double r = a[i][1];
a[i][1] = a[Jjl[1];
alJl[1] = r;

}

}

double NewtonsMethod: :MatMat(
int 1, int u, int i, int j, double** a, double** b)

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

365 {

366 double s = 0.0;

367

368 for (int k = 1; k < u; k++)
369 s += a[i][k] * b[k][]];
370

371 return s;

372}

373

374 double NewtonsMethod::MatTam(
375 int 1, int u, int i, int j, double** a, double** b)
376 {

377 double s = 0.0;

378

379 for (int k = 1; k < u; k++)
380 s += a[i][k] * b[J][k];
381

382 return s;

383 }

384

385 void NewtonsMethod: :Dec(

386 double** a, int n, double aux[], int p[])
387 {

388 double eps, r, s;

389 int k, pk = 0;

390 vector<double> v(n, 0);

391

392 r=-1.0;

393

394 for (int 1 =0; i < n; i++)
395 {

396 s = sgrt(MatTam(@, n, i, i, a, a));
397

398 if (s > r)

399 r=s;

400

401 v[i] = 1.0 / s;

402 }

403

404 eps = aux[2] * r;

405

406 int d = 1;

407

408 for (k = ©; k < n; k++)

409 {

410 int k1;

411

412 r=-1.0;

413 ki =k - 1;

414

415 for (int i = k; i < n; i++)

416 {

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

417 a[il[k] -= MatMat(e, ki1, i, k, a, a);
418 s = fabs(a[i][k]) * v[i];
419

420 if (s > r)

421 {

422 r=-s;

423 pk = ij;

424 }

425 }

426

427 p[k] = pk;

428 v[pk] = v[k];

429 s = a[pk][k];

430

431 if (fabs(s) < eps)

432 break;

433

434 if (s < 0.0)

435 d = -d;

436

437 if (pk != k)

438 {

439 d = -d;

440 ICRow(@, n, k, pk, a);
441 }

442

443 for (int i = k + 1; i < n; i++)
444 a[k][i] = (a[k][i] - MatMat(e, ki1, k, i, a, a)) / s;
445 }

446

447 aux[e] = d;

448 aux[2] = k - 1.0;

449 }

450

451 void NewtonsMethod::Inv(double** a, int n, int p[])
452 {

453 double r;

454 int j, k, ki;

455 vector<double> v(n, 0);

456

457 for (k = n - 1; k >= 0; k--)

458 {

459 ki =k + 1;

460

461 for (j =n-1; j >=k1; j--)
462 {

463 a[jllk1] = v[3i];

464 v[j] = -MatMat(k1l, n, k, j, a, a);
465 }

466

467 r = a[k][k];

468

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

469 for (j =n-1; j >=k1; j--)
470 {

471 a[k][3] = v[3l;

472 v[j] = -MatMat(k1, n, j, k, a, a) / r;
473 }

474

475 vik] = (1.0 - MatMat(kl, n, k, k, a, a)) / r;
476 }

477

478 DupColvec(@®, n, @, a, v.data());
479

480 for (k = n - 2; k >=0; k--)

481 {

482 ki = p[k];

483

484 if (k1 != k)

485 ICCol(o, n, k, ki, a);
486 }

487 }

488

489 void NewtonsMethod::DecInv(double** a, int n)
490 {

491 double aux[3] = { };

492 vector<int> p(n, 0);

493

494 aux[@] = 1.0e-10;

495

496 Dec(a, n, aux, p.data());

497

498 if (aux[2] == n)

499 Inv(a, n, p.data());

500 }

501

502 double NewtonsMethod::VecNorm2(int n, double v[])
503 {

504 double s = 0.0;

505

506 for (int 1 =0; i < n; i++)

507 s += v[i] * v[i];

508

509 return sqrt(s);

510 }

511

512 void NewtonsMethod: :MatVecMul(

513 int n, double a[], double** b, double v[])
514 {

515 for (int 1 =0; i < n; i++)

516 {

517 double s = ©;

518

519 for (int j = 0; j < n; j++)

520 s += b[i][j] * v[]l;

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

521

522 a[i] = s;

523 }

524}

525

526 long NewtonsMethod: :Solve(

527 double epsilon,

528 vector<double> 1,

529 vector<double> x1,

530 int jMax, long maxIt)

531 {

532 vector<double> @ = func(n, x0);

533 vector<double> h(n, @), g(n, 0);

534 double** jac = new double* [n];

535

536 for (int i =0; i < n; i++)

537 jac[i] = new double[n];

538

539 int i, j;

540 long iterations = 0;

541

542 do

543 {

544 Jacobian jacobian(xe, f@, di, func);
545 jacobian.CalculateJacobianMatrix(jac);
546 DecInv(jac, n);

547 MatVecMul(n, h.data(), jac, f@.data());
548

549 for (int k = 0; k < n; k++)

550 h[k] = -h[k];

551

552 double n@ = VecNorm2(n, f@.data()), ni;
553

554 for (j = ©; j < jMax; j++)

555 {

556 for (int k = @; k < n; k++)

557 {

558 g[k] = h[k] / pow(2.9, (double)j);
559 x1[k] = x0[k] + g[k];

560 }

561

562 f1 = func(n, x1);

563

564 nl = VecNorm2(n, fl.data());

565

566 if (n1 < no)

567 {

568 i=;

569 break;

570 }

571 }

572

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

12

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

if (j == jMax)
return maxIt;

char buffer[1024] = { }, line[128] = { };
double norm2 = VecNorm2(n, f@.data());
double norml = 0;

for (int i = 0; i < n; i++)
norml += fabs(f0[i]);

buffer[@] = "\0';

sprintf_s(line, 127, "%31d\t", iterations + 1);
strcat_s(buffer, line);

for (int i =0; i < n; i++) {
sprintf_s(line, 127, "%12.101f\t", x0[i]);
strcat_s(buffer, line);

}

sprintf_s(line, 127, "%17.10e\t%17.10e", norml,
strcat_s(buffer, line);

cout << buffer << endl;

if (norm2 < epsilon)
return iterations;

iterations++;

for (int k = 0; k < n; k++)
{

fo[k]
x0[k]

f1[k];
x1[k];

}

} while (iterations < maxIt);

return iterations;

}
double di(int i)
{
return 0.00000001;
}

vector<double> NewtonFunction(
int n, vector<double> x)

{

vector<double> f(n, 9);

for (int 1 =0; i < n; i++)

{

norm2);

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

13

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

int

if (i == e)

f[i] = x[1 + 1] * x[1i + 1] - 3.0 * x[i] * x[i];

else if (i < n - 1)
f[i] = x[1 - 1] * x[1 - 1] +
x[1 - 1] * x[1 + 1] + x[1 + 1] * x[1 + 1]
- 3.0 * x[i] * x[i];

else
f[i] = x[1 - 1] * x[1 - 1] + x[1i - 1] +
1.0 - 3.0 * x[i] * x[i];

}

return f;

main() {
vector<vector<double>> A = {
{2, 1},
{1, 1}
s
vector<double> b
vector<double> ¢

{ 20, 16 };
{3,213

Simplex simplex(A, b, c);

cout << "Simplex Solution" << endl << endl;
simplex.solve();

cout << endl;

double tolerance = 1.0e-15;
int m = 100000, n = 2;
vector<double> x0(2, 9), xm;

x0[0]
x0[1]

+1;
_1;

SteepestDescent sd(x0);

double ts = sd.HillClimber(
tolerance, m, 25, 1);

cout << "Steepest Descent Solution" << endl;
cout << endl;

for (int i =0; i < n; i++)

{
if (fabs(sd.getxm()[i]) < tolerance)
sd.getxm()[i] = ©;
cout << "x[" << 1 << "] =" << sd.getxm()[i] <<
}

cout << endl;

endl;

...\Jjames\source\repos\SimplexAlgorithm\SimplexAlgorithm.cpp

14

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698 }

n = 3;
vector<double> f1(n, @), yo(n, 0.9), yl(n, 0);

for (int i = 0; i < n; i++)
yo[i] = (i + 1.0) / (n + 1.9);

NewtonsMethod nm(y@, di, NewtonFunction);

int jMax = 100;
long maxIt = 1000;

cout << "Newton's Method for a System" << endl;

cout << endl;

cout << "Its\t";

cout << "x@\t\txI\t\tx2\t\t Norm-1\t\t\t Norm-2" << endl;
cout << endl;

long iterations = nm.Solve(
1.0e-15, f1, yl, jMax, maxIt);

return 0;

