Blog Entry © Thursday, December 4, 2025, by James Pate Williams, Jr., Seven Methods to Solve the N-Queens Puzzle and Electron Scattering by a Hydrogen Atom

References: Arc-consistency lookahead 1 algorithm applied to the N-Queens CSP. Algorithm from *Foundations of Constraint Satisfaction* by E. P. K. Tsang Chapter 5 page 127. Uses AC-3 from page 83.

N-Queens Puzzle Solvers:

- 1. AC-3
- 2. Back Jumping
- 3. Back Marking
- 4. Back Tracking
- 5. Brute Force
- 6. Evolutionary Hill Climber
- 7. Sosic-Gu Algorithm

The first five methods were illustrated in my Tuesday, December 2, 2025, blog entry.

Rebuild started at 7:55 PM...

1>----- Rebuild All started: Project: NQueensMethods, Configuration: Release x64 -----

1>pch.cpp

1>Arc3.cpp

1>Common.cpp

1>HillClimber.cpp

1>NQueensMethods.cpp

1>NQueensSolvers.cpp

1>SosicGu.cpp

1>Generating code

1>Previous IPDB not found, fall back to full compilation.

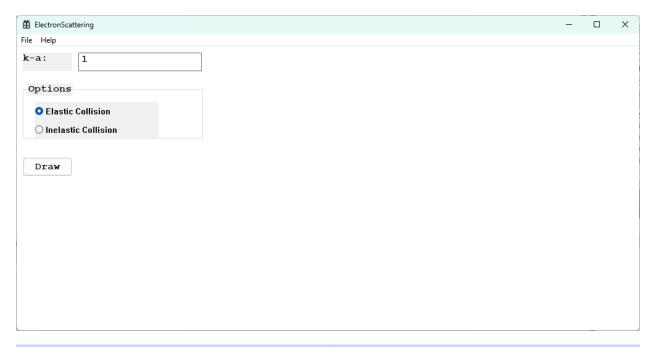
1>All 559 functions were compiled because no usable IPDB/IOBJ from previous compilation was found.

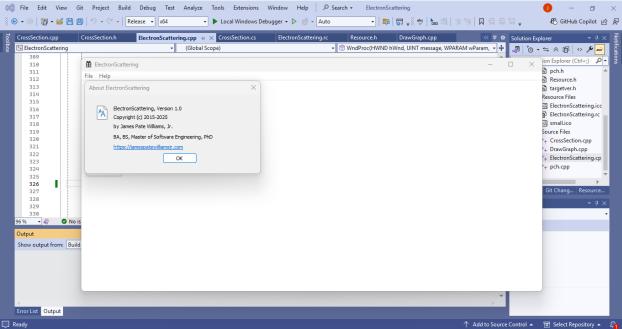
1>Finished generating code

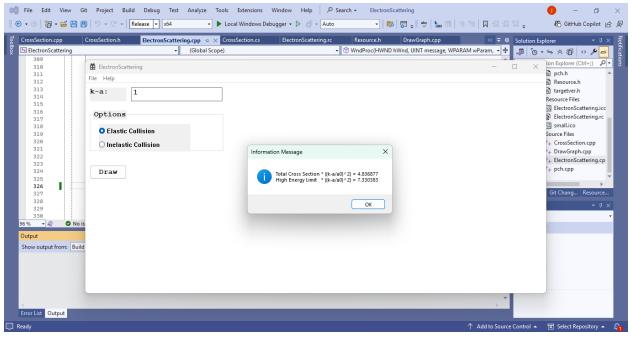
1>NQueensMethods.vcxproj ->

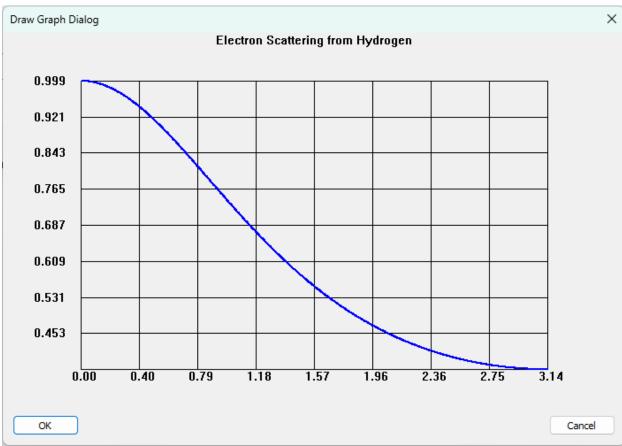
C:\Users\James\source\NQueensMethods\x64\Release\NQueensMethods.exe

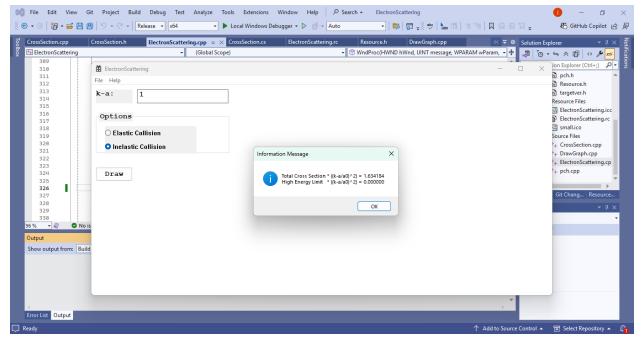
====== Rebuild All: 1 succeeded, 0 failed, 0 skipped ========


====== Rebuild completed at 7:55 PM and took 06.371 seconds =======


Method	n	Checks	Time (s)	SD	# Sol
AC-3	20	3925	0.285	0.315	50
Backjump	20	142	0.014	0.019	50
Backmark	20	NA	0.001	0.002	50
Backtrack	20	52	0.023	0.025	50
Hill Climb	20	4000	0.324	0.037	50
Sosic-Gu	20	NA	0.000	0	50
Method	n	Checks	Time (s)	SD	# Sol
AC-3	25	18478	1.200	1.582	50
Backjump	25	379	0.063	0.077	50
Backmark	25	NA	0.005	0.017	50
Backtrack	25	596	0.088	0.111	50
Hill Climb	25	5000	0.550	0.012	50
Sosic-Gu	25	NA	0.000	0	50
Method	n	Checks	Time (s)	SD	# Sol
	• •		, ,		
Sosic-Gu	100	NA	0.002	0.001	50
Sosic-Gu	1000	NA	0.115	0.011	50
Sosic-Gu	10000	NA	12.582	1.148	50


Reference: Physics 342: Useful Constants, Electron Scattering from Hydrogen


Electron Scattering by Hydrogen - Elastic Collison


$$q = 2k_a \sin\left(\frac{\vartheta}{2}\right)$$

$$f_1(q) = -\frac{2\mu e^2}{(4\pi^2h^2q^2)}, e = electronic \ charge, h \ Planck's \ constant$$

$$e = 4.8032 \times 10^{-10} in \ cgs \ units$$

$$h = 6.6261 \times 10^{-27} in \ cgs \ units$$

$$\mu = 9.1040446932562806e - 28 \ in \ grams$$

$$f_2(q) = \frac{1}{4}q^2a_0^2, a_0 \ is \ the \ Bohr \ radius = 5.291772083 \times 10^{-9} cm$$

$$m_h = m_e + m_p \equiv mass \ of \ the \ hydrogen \ atom$$

$$\mu = \frac{1}{m_e} + \frac{1}{m_h} = \frac{m_e m_h}{m_e + h_h} \equiv reduced \ mass \ of \ the \ system$$

