Henri Cohen’s Trial Division Algorithm Implemented by James Pate Williams, Jr.

I implemented this algorithm for C long (32-bit) number in 1997, C# big integers in approximately 2015 or 2016, and C unsigned long long (64-bit) integers in March, 2023.

/*
Author:  Pate Williams (c) 1997 - 2023

"Algorithm 8.1.1 (Trial Division). We assume given
a table of prime numbers p[1] = 2, p[2] = 3,..., p[k],
with k > 3, an array t <- [6, 4, 2, 4, 4, 6, 2], and
an index j such that if p[k] mod 30 is equal to
1, 7, 11, 13, 17, 19, 23 or 29 then j is equal to
0, 1, 2, 3, 4, 5, 6 or 7 respectively. Finally, we
give ourselves an upper bound B such that B >= p[k],
essentially to avoid spending too much time. Then
given a positive integer N, this algorithm tries to
factor (or split N) and if it fails, N will be free
of prime factors less than or equal to B."
-Henri Cohen-
See "A Course in Computational Algebraic Number
Theory" by Henri Cohen page 420.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define BITS_PER_LONG   32
#define BITS_PER_LONG_1 31
#define MAX_SIEVE 100000000L
#define LARGEST_PRIME 99999989L
#define SIEVE_SIZE (MAX_SIEVE / BITS_PER_LONG)

typedef unsigned long long ull;

struct factor { int expon;  ull prime; };
long *prime, sieve[SIEVE_SIZE];

int get_bit(long i, long *sieve) {
	long b = i % BITS_PER_LONG;
	long c = i / BITS_PER_LONG;

	return (sieve[c] >> (BITS_PER_LONG_1 - b)) & 1;
}

void set_bit(long i, long v, long *sieve) {
	long b = i % BITS_PER_LONG;
	long c = i / BITS_PER_LONG;
	long mask = 1 << (BITS_PER_LONG_1 - b);

	if (v == 1)
		sieve[c] |= mask;
	else
		sieve[c] &= ~mask;
}

void Sieve(long n, long *sieve) {
	int c, i, inc;

	set_bit(0, 0, sieve);
	set_bit(1, 0, sieve);
	set_bit(2, 1, sieve);
	for (i = 3; i <= n; i++)
		set_bit(i, i & 1, sieve);
	c = 3;
	do {
		i = c * c, inc = c + c;
		while (i <= n) {
			set_bit(i, 0, sieve);
			i += inc;
		}
		c += 2;
		while (!get_bit(c, sieve)) c++;
	} while (c * c <= n);
}

void get_bits(ull b, int *number, int *bits) {
	int i = 0;
	do {
		bits[i++] = b % 2;
		b = b / 2;
	} while (b > 0);
	*number = i;
}

 ull pow_mod(
	 ull x,
	 ull b, 
	 ull n) {
	// Figure 4.4 in "Cryptography Theory and Practice"
	// by Douglas R. Stinson page 127
	int bits[64], i, l;
	ull z = 1, s = 0;

	get_bits(b, &l, bits);
	s = bits[l - 1];
	for (i = l - 2; i >= 0; i--)
		s = 2 * s + bits[i];
	if (b != s) {
		printf("Error in pow_mod function\n");
		exit(-1);
	}
	for (i = l - 1; i >= 0; i--) {
		z = (z * z) % n;
		if (bits[i] == 1)
			z = (z * x) % n;
	}
	return z;
}

ull rand_ull(void) {
	ull r = 0;
	for (int i = 0; i < 64; i += 15 /*30*/) {
		r = r * ((ull)RAND_MAX + 1) + rand();
	}
	return r;
}

int Miller_Rabin(ull n, int t) {
	// returns 1 for prime
	// returns 0 for composite
	// "Handbook of Applied Cryptography"
	// Alfred J. Menezes among others
	// 4.24 Algorithm page 139
	int i, j, s = 0;
	ull a, n1 = n - 1, r, y;

	r = n1;
	while ((r % 2) == 0) {
		s++;
		r /= 2;
	}
	for (i = 0; i < t; i++)
	{
		while (true)
		{
			a = rand_ull() % n;
			
			if (a >= 2 && a <= n - 2)
				break;
		}
		y = pow_mod(a, r, n);
		if (y != 1 && y != n1) {
			j = 1;
			while (j <= s - 1 && y != n1) {
				y = (y * y) % n;
				if (y == 1)
					return 0;
				j++;
			}
			if (y == n1)
				return 0;
		}
	}
	return 1;
}

int trial_division(ull *N, long *prime,
	struct factor *f, int *count) {
	int found;
	ull B, d;
	int e, i, j = 0, k, m, n;
	int t[8] = { 6, 4, 2, 4, 2, 4, 6, 2 };
	int table[8] = { 1, 7, 11, 13, 17, 19, 23, 29 };
	ull l, r;

	if (*N <= 5) {
		*count = 1;
		f[0].expon = 1;
		switch (*N) {
		case 1: f[0].prime = 1; break;
		case 2: f[0].prime = 2; break;
		case 3: f[0].prime = 3; break;
		case 4: f[0].expon = 2; f[0].prime = 2; break;
		case 5: f[0].prime = 5; break;
		}
		return 1;
	}
	*count = 0;
	B = LARGEST_PRIME;
	i = -1, l = (ull)sqrt((double)*N), m = -1;
L2:
	m++;
	if (i == MAX_SIEVE) {
		i = j - 1;
		goto L5;
	}
	d = prime[m];
	k = d % 30;
	found = 0;
	for (n = 0; !found && n < 8; n++) {
		found = k == table[n];
		if (found) j = n;
	}
L3:
	r = *N % d;
	if (r == 0) {
		e = 0;
		do {
			e++;
			*N /= d;
		} while (*N % d == 0);
		f[*count].expon = e;
		f[*count].prime = d;
		*count = *count + 1;
		if (*N == 1) return 1;
		goto L2;
	}
	if (d >= l) {
		if (*N > 1) {
			f[*count].expon = 1;
			f[*count].prime = *N;
			*count = *count + 1;
			*N = 1;
			return 1;
		}
	}
	else if (i < 0) goto L2;
L5:
	i = (i + 1) % 8;
	d = d + t[i];
	if (d > B) return 0;
	goto L3;
}

int main(void) {
	char e_buffer[256], n_buffer[256] = { 0 };
	long k, e_length, n_length = 0, valid;
	double time_spent;
	int count;
	long i, p = 2;
	ull largest_prime;
	long prime_count = 0;
	ull N, sqrtN;
	struct factor f[32];
	clock_t begin, end;

	begin = clock();
	Sieve(MAX_SIEVE, sieve);
	for (p = 2; p < MAX_SIEVE; p++) {
		while (!get_bit(p, sieve))
			p++;
		prime_count++;
	}
	prime_count--;
	prime = (long*)malloc(prime_count * sizeof(long));
	i = 0;
	p = 2;
	while (i < prime_count)
	{
		while (!get_bit(p, sieve))
			p++;
		prime[i++] = p++;
	}
	largest_prime = LARGEST_PRIME;
	printf("Largest prime = %I64u\n", largest_prime);
	end = clock();
	time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
	printf("Time to create prime number sieve in seconds %lf\n", time_spent);
	for (;;) {
		printf("N = ");
		scanf_s("%s", e_buffer, 256);
		e_length = strlen(e_buffer);
		n_length = 0;
		valid = 1;
		for (k = 0; valid && k < e_length; k++) {
			if (e_buffer[k] >= '0' &&
				e_buffer[k] <= '9' ||
				e_buffer[k] == ',') {
				if (e_buffer[k] != ',') {
					n_buffer[n_length++] = e_buffer[k];
				}
			}
			else {
				valid = 0;
			}
		}
		if (!valid) {
			printf("Invalid character must in set {0, 1, ..., 9, ',')\n");
			continue;
		}
		else {
			n_buffer[n_length] = '\0';
			N = atoll(n_buffer);
			sqrtN = (ull)sqrt((double)N);
			if (sqrtN > largest_prime) {
				printf("Number is too large!\n");
				printf("Square root %I64u must be < %I64u\n", sqrtN, largest_prime);
				continue;
			}
		}
		if (N <= 0) break;
		trial_division(&N, prime, f, &count);
		printf("Non-trivial factors:\n");
		for (i = 0; i < count; i++) {
			printf("%I64u", f[i].prime);
			if (f[i].expon > 1) printf(" ^ %ld\n", f[i].expon);
			else printf("\n");
		}
		if (N != 1)
		{
			if (Miller_Rabin(N, 20) == 1)
				printf("Residue is a prime number\n");
			else
				printf("Last factor is composite\n");
		}
		else
			printf("Number was completely factored\n");
	}
	return 0;
}
Unknown's avatar

Author: jamespatewilliamsjr

My whole legal name is James Pate Williams, Jr. I was born in LaGrange, Georgia approximately 70 years ago. I barely graduated from LaGrange High School with low marks in June 1971. Later in June 1979, I graduated from LaGrange College with a Bachelor of Arts in Chemistry with a little over a 3 out 4 Grade Point Average (GPA). In the Spring Quarter of 1978, I taught myself how to program a Texas Instruments desktop programmable calculator and in the Summer Quarter of 1978 I taught myself Dayton BASIC (Beginner's All-purpose Symbolic Instruction Code) on LaGrange College's Data General Eclipse minicomputer. I took courses in BASIC in the Fall Quarter of 1978 and FORTRAN IV (Formula Translator IV) in the Winter Quarter of 1979. Professor Kenneth Cooper, a genius poly-scientist taught me a course in the Intel 8085 microprocessor architecture and assembly and machine language. We would hand assemble our programs and insert the resulting machine code into our crude wooden box computer which was designed and built by Professor Cooper. From 1990 to 1994 I earned a Bachelor of Science in Computer Science from LaGrange College. I had a 4 out of 4 GPA in the period 1990 to 1994. I took courses in C, COBOL, and Pascal during my BS work. After graduating from LaGrange College a second time in May 1994, I taught myself C++. In December 1995, I started using the Internet and taught myself client-server programming. I created a website in 1997 which had C and C# implementations of algorithms from the "Handbook of Applied Cryptography" by Alfred J. Menezes, et. al., and some other cryptography and number theory textbooks and treatises.

Leave a comment