Stinson Exercise 5.6 Galois Field

/*
Author:  Pate Williams (c) 1997

Exercise
"5.6 The field GF(2 ^ 5) can be constructed as
Z_2[x]/(x ^ 5 + x ^ 2 + 1). Perform the following
computations in this field.
(a) Compute (x ^ 4 + x ^ 2) * (x ^ 3 + x + 1).
(b) Using the Extended Euclidean algorithm
compute (x ^ 3 + x ^ 2) ^ - 1.
(c) Using the square and multiply algorithm,
compute x ^ 25." -Douglas R. Stinson-
See "Cryptography: Theory and Practice" by
Douglas R. Stinson page 201.
*/

#include <math.h>
#include <stdio.h>

#define SIZE 32l

void poly_mul(long m, long n, long *a, long *b, long *c, long *p)
{
	long ai, bj, i, j, k, sum;

	*p = m + n;
	for (k = 0; k <= *p; k++) {
		sum = 0;
		for (i = 0; i <= k; i++) {
			j = k - i;
			if (i > m) ai = 0; else ai = a[i];
			if (j > n) bj = 0; else bj = b[j];
			sum += ai * bj;
		}
		c[k] = sum;
	}
}

void poly_div(long m, long n, long *u, long *v,
	long *q, long *r, long *p, long *s)
{
	long j, jk, k, nk, vn = v[n];

	for (j = 0; j <= m; j++) r[j] = u[j];
	if (m < n) {
		*p = 0, *s = m;
		q[0] = 0;
	}
	else {
		*p = m - n, *s = n - 1;
		for (k = *p; k >= 0; k--) {
			nk = n + k;
			q[k] = r[nk] * pow(vn, k);
			for (j = nk - 1; j >= 0; j--) {
				jk = j - k;
				if (jk >= 0)
					r[j] = vn * r[j] - r[nk] * v[j - k];
				else
					r[j] = vn * r[j];
			}
		}
		while (*p > 0 && q[*p] == 0) *p = *p - 1;
		while (*s > 0 && r[*s] == 0) *s = *s - 1;
	}
}

void poly_exp_mod(long degreeA, long degreem, long n,
	long modulus, long *A, long *m, long *s,
	long *ds)
{
	int zero;
	long dp, dq, dx = degreeA, i;
	long p[SIZE], q[SIZE], x[SIZE];

	*ds = 0, s[0] = 1;
	for (i = 0; i <= dx; i++) x[i] = A[i];
	while (n > 0) {
		if ((n & 1) == 1) {
			/* s = (s * x) % m; */
			poly_mul(*ds, dx, s, x, p, &dp);
			poly_div(dp, degreem, p, m, q, s, &dq, ds);
			for (i = 0; i <= *ds; i++) s[i] %= modulus;
			zero = s[*ds] == 0, i = *ds;
			while (i > 0 && zero) {
				if (zero) *ds = *ds - 1;
				zero = s[--i] == 0;
			}
		}
		n >>= 1;
		/* x = (x * x) % m; */
		poly_mul(dx, dx, x, x, p, &dp);
		poly_div(dp, degreem, p, m, q, x, &dq, &dx);
		for (i = 0; i <= dx; i++) x[i] %= modulus;
		zero = x[dx] == 0, i = dx;
		while (i > 0 && zero) {
			if (zero) dx--;
			zero = x[--i] == 0;
		}
	}
}

void poly_copy(long db, long *a, long *b, long *da)
/* a = b */
{
	long i;

	*da = db;
	for (i = 0; i <= db; i++) a[i] = b[i];
}

int poly_Extended_Euclidean(long db, long dn,
	long *b, long *n,
	long *t, long *dt)
{
	int nonzero;
	long db0, dn0, dq, dr, dt0 = 0, dtemp, du, i;
	long b0[SIZE], n0[SIZE], q[SIZE];
	long r[SIZE], t0[SIZE], temp[SIZE], u[SIZE];

	*dt = 0;
	poly_copy(dn, n0, n, &dn0);
	poly_copy(db, b0, b, &db0);
	t0[0] = 0;
	t[0] = 1;
	poly_div(dn0, db0, n0, b0, q, r, &dq, &dr);
	nonzero = r[0] != 0;
	for (i = 1; !nonzero && i <= dr; i++)
		nonzero = r[i] != 0;
	while (nonzero) {
		poly_mul(dq, *dt, q, t, u, &du);
		if (dt0 < du)
			for (i = dt0 + 1; i <= du; i++) t0[i] = 0;
		for (i = 0; i <= du; i++)
			temp[i] = t0[i] - u[i];
		dtemp = du;
		poly_copy(*dt, t0, t, &dt0);
		poly_copy(dtemp, t, temp, dt);
		poly_copy(db0, n0, b0, &dn0);
		poly_copy(dr, b0, r, &db0);
		poly_div(dn0, db0, n0, b0, q, r, &dq, &dr);
		nonzero = r[0] != 0;
		for (i = 1; !nonzero && i <= dr; i++)
			nonzero = r[i] != 0;
	}
	if (db0 != 0 && b0[0] != 1) return 0;
	return 1;
}

void poly_mod(long da, long p, long *a, long *new_da)
{
	int zero;
	long i;

	for (i = 0; i <= da; i++) {
		a[i] %= p;
		if (a[i] < 0) a[i] += p;
	}
	zero = a[da] == 0;
	for (i = da - 1; zero && i >= 0; i--) {
		da--;
		zero = a[i] == 0;
	}
	*new_da = da;
}

void poly_write(char *label, long da, long *a)
{
	long i;

	printf("%s", label);
	for (i = da; i >= 0; i--)
		printf("%ld ", a[i]);
	printf("\n");
}

int main(void)
{
	long da = 4, db = 3, dc = 3, dd = 5;
	long de, dq, dr, ds, p = 2;
	long a[5] = { 0, 0, 1, 0, 1 };
	long b[4] = { 1, 1, 0, 1 };
	long c[4] = { 0, 0, 1, 1 };
	long d[6] = { 1, 0, 1, 0, 0, 1 };
	long e[SIZE], q[SIZE], r[SIZE], s[SIZE];

	poly_write("A = ", da, a);
	poly_write("B = ", db, b);
	poly_write("C = ", dc, c);
	poly_write("D = ", dd, d);
	poly_mul(da, db, a, b, e, &de);
	poly_mod(de, p, e, &de);
	poly_div(de, dd, e, d, q, r, &dq, &dr);
	poly_mod(dq, p, q, &dq);
	poly_mod(dr, p, r, &dr);
	poly_write("A * B mod 2 = ", de, e);
	poly_write("A * B / D mod 2 = ", dq, q);
	poly_write("A * B mod D, 2  = ", dr, r);
	if (!poly_Extended_Euclidean(dc, dd, c, d, e, &de))
		printf("*error*\in poly_Extended_Euclidean\n");
	poly_mod(de, p, e, &de);
	poly_write("C ^ - 1 mod D = ", de, e);
	poly_mul(dc, de, c, e, s, &ds);
	poly_mod(ds, p, s, &ds);
	poly_div(ds, dd, s, d, q, r, &dq, &dr);
	poly_mod(dr, p, r, &dr);
	poly_write("C * C ^ - 1 mod D, 2 = ", dr, r);
	dq = 1;
	q[0] = 0;
	q[1] = 1;
	poly_exp_mod(dq, dd, 7, p, q, d, s, &ds);
	poly_mod(ds, p, s, &ds);
	poly_write("x ^  7 mod D, 2 = ", ds, s);
	poly_exp_mod(dq, dd, 9, p, q, d, s, &ds);
	poly_mod(ds, p, s, &ds);
	poly_write("x ^  9 mod D, 2 = ", ds, s);
	poly_exp_mod(dq, dd, 10, p, q, d, s, &ds);
	poly_mod(ds, p, s, &ds);
	poly_write("x ^ 10 mod D, 2 = ", ds, s);
	poly_exp_mod(dq, dd, 25, p, q, d, s, &ds);
	poly_mod(ds, p, s, &ds);
	poly_write("x ^ 25 mod D, 2 = ", ds, s);
	return 0;
}
Unknown's avatar

Author: jamespatewilliamsjr

My whole legal name is James Pate Williams, Jr. I was born in LaGrange, Georgia approximately 70 years ago. I barely graduated from LaGrange High School with low marks in June 1971. Later in June 1979, I graduated from LaGrange College with a Bachelor of Arts in Chemistry with a little over a 3 out 4 Grade Point Average (GPA). In the Spring Quarter of 1978, I taught myself how to program a Texas Instruments desktop programmable calculator and in the Summer Quarter of 1978 I taught myself Dayton BASIC (Beginner's All-purpose Symbolic Instruction Code) on LaGrange College's Data General Eclipse minicomputer. I took courses in BASIC in the Fall Quarter of 1978 and FORTRAN IV (Formula Translator IV) in the Winter Quarter of 1979. Professor Kenneth Cooper, a genius poly-scientist taught me a course in the Intel 8085 microprocessor architecture and assembly and machine language. We would hand assemble our programs and insert the resulting machine code into our crude wooden box computer which was designed and built by Professor Cooper. From 1990 to 1994 I earned a Bachelor of Science in Computer Science from LaGrange College. I had a 4 out of 4 GPA in the period 1990 to 1994. I took courses in C, COBOL, and Pascal during my BS work. After graduating from LaGrange College a second time in May 1994, I taught myself C++. In December 1995, I started using the Internet and taught myself client-server programming. I created a website in 1997 which had C and C# implementations of algorithms from the "Handbook of Applied Cryptography" by Alfred J. Menezes, et. al., and some other cryptography and number theory textbooks and treatises.

Leave a comment