Blog Entry © Monday, September 8, 2025, by James Pate Williams, Jr., Comparison of Two Applications to Find the Minima of Classical Objective Functions

#pragma once
#include "pch.h"

class Functions
{

public:

    // Ackley's function

    static double lbx1[3];
    static double ubx1[3];
    static double fBest1;
    static double xBest1[3];

    static double f1(
        int n, std::vector<double> z);

    // Beale's function

    static double lbx2[3];
    static double ubx2[3];
    static double fBest2;
    static double xBest2[3];

    static double f2(
        int n, std::vector<double> z);
    
    // Booth's function

    static double lbx3[3];
    static double ubx3[3];
    static double fBest3;
    static double xBest3[3];

    static double f3(
        int n, std::vector<double> z);

    // Rosenbrock function

    static double lbx4[3];
    static double ubx4[3];
    static double fBest4;
    static double xBest4[3];

    static double f4(
        int n, std::vector<double> z);

    // Holder table function

    static double lbx5[3];
    static double ubx5[3];
    static double fBest5;
    static double xBest5[3];

    static double f5(
        int n, std::vector<double> z);

    // McCormick function

    static double lbx6[3];
    static double ubx6[3];
    static double fBest6;
    static double xBest6[3];

    static double f6(
        int n, std::vector<double> z);

    static double rosenbrock(
        int n, std::vector<double> x,
        std::vector<double>& g);

    static double mccormick(
        int n, std::vector<double> z,
        std::vector<double>& g);
};

#include "pch.h"
#include "Functions.h"

// Ackley's function

double Functions::lbx1[3] = { 0, -5, -5 };
double Functions::ubx1[3] = { 0, +5, +5 };
double Functions::fBest1 = 0.0;
double Functions::xBest1[3] = { 0, 0.0, 0.0 };

double Functions::f1(int n, std::vector<double> z)
{
	double e = exp(1.0), pi = 4.0 * atan(1.0);
	double x = z[1], y = z[2], pi2 = 2.0 * pi;

	return -20 * exp(-0.2 * sqrt(0.5 * (x * x + y * y))) -
		exp(0.5 * (cos(pi2 * x) + cos(pi2 * y))) + e + 20;
}

// Beale's function

double Functions::lbx2[3] = { 0, -4.5, -4.5 };
double Functions::ubx2[3] = { 0, +4.5, +4.5 };
double Functions::fBest2 = 0.0;
double Functions::xBest2[3] = { 0, 3.0, 2.5 };

double Functions::f2(int n, std::vector<double> z)
{
	double x = z[1], y = z[2];

	return pow(1.5 - x + x * y, 2) + pow(2.25 - x + x * y * y, 2) +
		pow(2.625 - x + x * y * y * y, 2);
}

// Booth's function

double Functions::lbx3[3] = {0, -10, -10};
double Functions::ubx3[3] = {0, +10, +10};
double Functions::fBest3 = 0.0;
double Functions::xBest3[3] = {0, 1.0, 3.0};

double Functions::f3(int n, std::vector<double> z)
{
	double x = z[1], y = z[2];

	return pow(x + 2 * y - 7, 2) + pow(2 * x + y - 5, 2);
}

// Rosenbrock function

double Functions::lbx4[3] = {0, -100.0, -100.0};
double Functions::ubx4[3] = {0, +100.0, +100.0};
double Functions::fBest4 = 0.0;
double Functions::xBest4[3] = {0, 1.0, 1.0};

double Functions::f4(int n, std::vector<double> x)
{
	double temp = x[2] - x[1] * x[1];

	return temp * temp * 100.0 + (1.0 - x[1]) * (1.0 - x[1]);
}

// Holder table function

double Functions::lbx5[3] = {0, -10.0, -10.0};
double Functions::ubx5[3] = {0, +10.0, +10.0};
double Functions::fBest5 = -19.2085;
double Functions::xBest5[3] = {0, 8.05502, 9.66459};

double Functions::f5(int n, std::vector<double> z)
{
	double pi = 4.0 * atan(1.0);
	double x = z[1], y = z[2];

	return -fabs(sin(x) * cos(y) *
		exp(fabs(1.0 - sqrt(x * x + y * y) / pi)));
}

// McCormick function

double Functions::lbx6[3] = {0, -1.5, -3};
double Functions::ubx6[3] = {0, +4, +4};
double Functions::fBest6 = -1.9133;
double Functions::xBest6[3] = {0, -0.54719, -1.54719};

double Functions::f6(int n, std::vector<double> z)
{
	double x = z[1], y = z[2];

	return sin(x + y) + pow(x - y, 2) - 1.5 * x + 2.5 * y + 1;
}

double Functions::rosenbrock(
	int n, std::vector<double> x,
	std::vector<double>& g)
{
	double temp;

	temp = x[2] - x[1] * x[1];
	g[1] = (-temp * 400.0 + 2.0) * x[1] - 2.0;
	g[2] = temp * 200.0;
	return temp * temp * 100.0 + (1.0 - x[1]) * (1.0 - x[1]);
}

double Functions::mccormick(
	int n, std::vector<double> z,
	std::vector<double>& g)
{
	double x = z[1], y = z[2];
	double c = cos(x + y);
	double p = 2.0 * (x - y);

	g[1] = c + p - 1.5;
	g[2] = c - p + 2.5;

	return sin(x + y) + pow(x - y, 2) - 1.5 * x + 2.5 * y + 1;
}

The PRAXIS and FLEMIN C source code can be found in the handbook “A Numerical Library in C for Scientists and Engineers” (c) 1996 by H. T. Lau, Ph.D. I translated the C code to C++ using Standard Template Library vectors.

Unknown's avatar

Author: jamespatewilliamsjr

My whole legal name is James Pate Williams, Jr. I was born in LaGrange, Georgia approximately 70 years ago. I barely graduated from LaGrange High School with low marks in June 1971. Later in June 1979, I graduated from LaGrange College with a Bachelor of Arts in Chemistry with a little over a 3 out 4 Grade Point Average (GPA). In the Spring Quarter of 1978, I taught myself how to program a Texas Instruments desktop programmable calculator and in the Summer Quarter of 1978 I taught myself Dayton BASIC (Beginner's All-purpose Symbolic Instruction Code) on LaGrange College's Data General Eclipse minicomputer. I took courses in BASIC in the Fall Quarter of 1978 and FORTRAN IV (Formula Translator IV) in the Winter Quarter of 1979. Professor Kenneth Cooper, a genius poly-scientist taught me a course in the Intel 8085 microprocessor architecture and assembly and machine language. We would hand assemble our programs and insert the resulting machine code into our crude wooden box computer which was designed and built by Professor Cooper. From 1990 to 1994 I earned a Bachelor of Science in Computer Science from LaGrange College. I had a 4 out of 4 GPA in the period 1990 to 1994. I took courses in C, COBOL, and Pascal during my BS work. After graduating from LaGrange College a second time in May 1994, I taught myself C++. In December 1995, I started using the Internet and taught myself client-server programming. I created a website in 1997 which had C and C# implementations of algorithms from the "Handbook of Applied Cryptography" by Alfred J. Menezes, et. al., and some other cryptography and number theory textbooks and treatises.

Leave a comment