Part of a New Linear Algebra Package in C++ Implemented by James Pate Williams, Jr.

// Algorithms from "A Course in Computational
// Algebraic Number Theory" by Henri Cohen
// Implemented by James Pate Williams, Jr.
// Copyright (c) 2023 All Rights Reserved

#pragma once
#include "pch.h"

template<class T> class Matrix
{
public:
	size_t m, n;
	T** data;

	Matrix() { m = 0; n = 0; data = NULL; };
	Matrix(size_t m, size_t n)
	{
		this->m = m;
		this->n = n;
		data = new T*[m];

		if (data == NULL)
			exit(-300);

		for (size_t i = 0; i < m; i++)
		{
			data[i] = new T[n];

			if (data[i] == NULL)
				exit(-301);
		}
	};
	void OutputMatrix(
		fstream& outs, char fill, int precision, int width)
	{
		for (size_t i = 0; i < m; i++)
		{
			for (size_t j = 0; j < n; j++)
			{
				outs << setfill(fill) << setprecision(precision);
				outs << setw(width) << data[i][j] << '\t';
			}

			outs << endl;
		}
	};
};

template<class T> class Vector
{
public:
	size_t n;
	T* data;

	Vector() { n = 0; data = NULL; };
	Vector(size_t n)
	{
		this->n = n;
		data = new T[n];
	};
	void OutputVector(
		fstream& outs, char fill, int precision, int width)
	{
		for (size_t i = 0; i < n; i++)
		{
			outs << setfill(fill) << setprecision(precision);
			outs << setw(width) << data[i] << '\t';
		}

		outs << endl;
	};
};

class LinearAlgebra
{
public:
	bool initialized;
	size_t m, n;
	Matrix<double> M;
	Vector<double> B;

	LinearAlgebra() { 
		initialized = false;
		m = 0; n = 0;
		M.data = NULL;
		B.data = NULL;
	};
	LinearAlgebra(size_t m, size_t n) {
		initialized = false;
		this->m = m;
		this->n = n;
		this->M.m = m;
		this->M.n = n;
		this->B.n = n;
		this->M.data = new double*[m];
		this->B.data = new double[n];

		if (M.data != NULL)
		{
			for (size_t i = 0; i < m; i++)
			{
				this->M.data[i] = new double[n];

				for (size_t j = 0; j < n; j++)
					this->M.data[i][j] = 0;
			}
		}

		if (B.data != NULL)
		{
			this->B.data = new double[n];

			for (size_t i = 0; i < n; i++)
				this->B.data[i] = 0;
		}

		initialized = this->B.data != NULL && this->M.data != NULL;
	};
	LinearAlgebra(
		size_t m, size_t n,
		double** M,
		double* B)
	{
		this->m = m;
		this->n = n;
		this->M.m = m;
		this->M.n = n;
		this->M.data = new double*[m];

		if (M != NULL)
		{
			for (size_t i = 0; i < m; i++)
			{
				this->M.data[i] = new double[n];

				for (size_t j = 0; j < n; j++)
					this->M.data[i][j] = M[i][j];
			}
		}

		if (B != NULL)
		{
			this->B.data = new double[n];

			for (size_t i = 0; i < m; i++)
				this->B.data[i] = B[i];
		}

		initialized = this->B.data != NULL && this->M.data != NULL;
	}
	~LinearAlgebra()
	{
		M.m = m;
		M.n = n;
		B.n = n;

		if (B.data != NULL)
			delete[] B.data;

		for (size_t i = 0; i < m; i++)
			if (M.data[i] != NULL)
				delete[] M.data[i];

		if (M.data != NULL)
			delete[] M.data;
	}
	double DblDeterminant(size_t n, bool failure);
	Vector<double> DblGaussianElimination(
		bool& failure);
	// The following three methods are from the
	// textbook "Elementary Numerical Analysis
	// An Algorithmic Approach" by S. D. Conte
	// and Carl de Boor Translated from the
	// original FORTRAN by James Pate Williams, Jr.
	// Copyright (c) 2023 All Rights Reserved
	bool DblGaussianFactor(
		size_t n,
		Vector<int>& pivot);
	bool DblGaussianSolution(
		int n,
		Vector<double>& x,
		Vector<int>& pivot);
	bool DblSubstitution(
		size_t n,
		Vector<double>& x,
		Vector<int>& pivot);
	bool DblInverse(
		size_t n,
		Matrix<double>& A,
		Vector<int>& pivot);
};
#include "pch.h"
#include "LinearAlgebra.h"

double LinearAlgebra::DblDeterminant(
    size_t n, bool failure)
{
    double deter = 1;
    Vector<int> pivot(n);

    if (!initialized || m != n)
    {
        failure = true;
        return 0.0;
    }

    if (!DblGaussianFactor(n, pivot))
    {
        failure = true;
        return 0.0;
    }

    for (size_t i = 0; i < n; i++)
        deter *= M.data[i][i];

    return deter;
}

Vector<double> LinearAlgebra::DblGaussianElimination(
    bool& failure)
{
    double* C = new double[m];
    Vector<double> X(n);

    X.data = new double[n];

    if (X.data == NULL)
        exit(-200);

    if (!initialized)
    {
        failure = true;
        delete[] C;
        return X;
    }
    
    for (size_t i = 0; i < m; i++)
        C[i] = -1;

    failure = false;

    for (size_t j = 0; j < n; j++)
    {
        bool found = false;
        size_t i = j;

        while (i < n && !found)
        {
            if (M.data[i][j] != 0)
                found = true;
            else
                i++;
        }

        if (!found)
        {
            failure = true;
            break;
        }

        if (i > j)
        {
            for (size_t l = j; l < n; l++)
            {
                double t = M.data[i][l];
                M.data[i][l] = M.data[j][l];
                M.data[j][l] = t;
                t = B.data[i];
                B.data[i] = B.data[j];
                B.data[j] = t;
            }
        }

        double d = 1.0 / M.data[j][j];

        for (size_t k = j + 1; k < n; k++)
            C[k] = d * M.data[k][j];

        for (size_t k = j + 1; k < n; k++)
        {
            for (size_t l = j + 1; l < n; l++)
                M.data[k][l] = M.data[k][l] - C[k] * M.data[j][l];
            
            B.data[k] = B.data[k] - C[k] * B.data[j];
        }
    }

    for (int i = (int)n - 1; i >= 0; i--)
    {
        double sum = 0;

        for (size_t j = i + 1; j < n; j++)
            sum += M.data[i][j] * X.data[j];

        X.data[i] = (B.data[i] - sum) / M.data[i][i];
    }

    delete[] C;
    return X;
}

bool LinearAlgebra::DblGaussianFactor(
    size_t n,
    Vector<int>& pivot)
    // returns false if matrix is singular
{
    Vector<double> d(n);
    double awikod, col_max, ratio, row_max, temp;
    int flag = 1;
    size_t i_star, itemp;

    for (size_t i = 0; i < n; i++)
    {
        pivot.data[i] = i;
        row_max = 0;
        for (size_t j = 0; j < n; j++)
            row_max = max(row_max, abs(M.data[i][j]));
        if (row_max == 0)
        {
            flag = 0;
            row_max = 1;
        }
        d.data[i] = row_max;
    }
    if (n <= 1) return flag != 0;
    // factorization
    for (size_t k = 0; k < n - 1; k++)
    {
        // determine pivot row the row i_star
        col_max = abs(M.data[k][k]) / d.data[k];
        i_star = k;
        for (size_t i = k + 1; i < n; i++)
        {
            awikod = abs(M.data[i][k]) / d.data[i];
            if (awikod > col_max)
            {
                col_max = awikod;
                i_star = i;
            }
        }
        if (col_max == 0)
            flag = 0;
        else
        {
            if (i_star > k)
            {
                // make k the pivot row by
                // interchanging with i_star
                flag *= -1;
                itemp = pivot.data[i_star];
                pivot.data[i_star] = pivot.data[k];
                pivot.data[k] = itemp;
                temp = d.data[i_star];
                d.data[i_star] = d.data[k];
                d.data[k] = temp;
                for (size_t j = 0; j < n; j++)
                {
                    temp = M.data[i_star][j];
                    M.data[i_star][j] = M.data[k][j];
                    M.data[k][j] = temp;
                }
            }
            // eliminate x[k]
            for (size_t i = k + 1; i < n; i++)
            {
                M.data[i][k] /= M.data[k][k];
                ratio = M.data[i][k];
                for (size_t j = k + 1; j < n; j++)
                    M.data[i][j] -= ratio * M.data[k][j];
            }
        }

        if (M.data[n - 1][n - 1] == 0) flag = 0;
    }

    if (flag == 0)
        return false;

    return true;
}

bool LinearAlgebra::DblGaussianSolution(
    int n,
    Vector<double>& x,
    Vector<int>& pivot)
{
    if (!DblGaussianFactor(n, pivot))
        return false;

    return DblSubstitution(n, x, pivot);
}

bool LinearAlgebra::DblSubstitution(
    size_t n, Vector<double>& x,
    Vector<int>& pivot)
{
    double sum;
    size_t j, n1 = n - 1;

    if (n == 1)
    {
        x.data[0] = B.data[0] / M.data[0][0];
        return true;
    }

    // forward substitution

    x.data[0] = B.data[pivot.data[0]];

    for (int i = 1; i < (int)n; i++)
    {
        for (j = 0, sum = 0; j < (size_t)i; j++)
            sum += M.data[i][j] * x.data[j];

        x.data[i] = B.data[pivot.data[i]] - sum;
    }

    // backward substitution

    x.data[n1] /= M.data[n1][n1];

    for (int i = n - 2; i >= 0; i--)
    {
        double sum = 0.0;

        for (j = i + 1; j < n; j++)
            sum += M.data[i][j] * x.data[j];

        x.data[i] = (x.data[i] - sum) / M.data[i][i];
    }

    return true;
}

bool LinearAlgebra::DblInverse(
    size_t n,
    Matrix<double>& A,
    Vector<int>& pivot)
{
    Vector<double> x(n);

    if (!DblGaussianFactor(n, pivot))
        return false;

    for (size_t i = 0; i < n; i++)
    {
        for (size_t j = 0; j < n; j++)
            B.data[j] = 0;
    }
    
    for (size_t i = 0; i < n; i++)
    {
        B.data[i] = 1;

        if (!DblSubstitution(n, x, pivot))
            return false;

        B.data[i] = 0;

        for (size_t j = 0; j < n; j++)
           A.data[i][j] = x.data[pivot.data[j]];
    }

    return true;
}
/*
** Cohen's linear algebra test program
** Implemented by James Pate Williams, Jr.
** Copyright (c) 2023 All Rights Reserved
*/

#include "pch.h"
#include "LinearAlgebra.h"

double GetDblNumber(fstream& inps)
{
    char ch = inps.get();
    string numberStr;

    while (ch == ' ' || ch == '\t' || ch == '\r' || ch == '\n')
        ch = inps.get();

    while (ch == '+' || ch == '-' || ch == '.' ||
        ch >= '0' && ch <= '9')
    {
        numberStr += ch;
        ch = inps.get();
    }

    double x = atof(numberStr.c_str());
    return x;
}

int GetIntNumber(fstream& inps)
{
    char ch = inps.get();
    string numberStr;

    while (ch == ' ' || ch == '\t' || ch == '\r' || ch == '\n')
        ch = inps.get();

    while (ch == '+' || ch == '-' || ch >= '0' && ch <= '9')
    {
        numberStr += ch;
        ch = inps.get();
    }

    int x = atoi(numberStr.c_str());
    return x;
}

int main()
{
    fstream inps;

    inps.open("CLATestFile.txt", fstream::in);
    
    if (inps.fail())
    {
        cout << "Input file opening error!" << endl;
        return -1;
    }

    fstream outs;

    outs.open("CLAResuFile.txt", fstream::out | fstream::ate);

    if (outs.fail())
    {
        cout << "Output file opening error!" << endl;
        return -2;
    }

    size_t m, n;
    
    while (!inps.eof())
    {
        m = GetIntNumber(inps);

        if (inps.eof())
            return 0;

        if (m < 1)
        {
            cout << "The number of rows must be >= 1" << endl;
            return -100;
        }

        n = GetIntNumber(inps);

        if (n < 1)
        {
            cout << "The number of rows must be >= 1" << endl;
            return -101;
        }

        LinearAlgebra la(m, n);
        Matrix<double> copyM(m, n);
        Vector<double> copyB(n);

        for (size_t i = 0; i < m; i++)
        {
            for (size_t j = 0; j < n; j++)
            {
                double x = GetDblNumber(inps);

                la.M.data[i][j] = x;
                copyM.data[i][j] = x;
            }
        }

        for (size_t i = 0; i < n; i++)
        {
           la.B.data[i] = GetDblNumber(inps);
           copyB.data[i] = la.B.data[i];
        }

        bool failure = false;
        Vector<double> X = la.DblGaussianElimination(failure);

        if (!failure)
            X.OutputVector(outs, ' ', 5, 8);
        else
        {
            cout << "Cohen Gaussian elimination failure!" << endl;
            exit(-102);
        }


        for (size_t i = 0; i < m; i++)
        {
            la.B.data[i] = copyB.data[i];

            for (size_t j = 0; j < n; j++)
            {
                la.M.data[i][j] = copyM.data[i][j];
            }
        }

        Matrix<double> A(n, n);
        Vector<int> pivot(n);
        
        if (!la.DblGaussianSolution(n, X, pivot))
            exit(-103);

        X.OutputVector(outs, ' ', 5, 8);

        for (size_t i = 0; i < m; i++)
        {
            la.B.data[i] = copyB.data[i];

            for (size_t j = 0; j < n; j++)
            {
                la.M.data[i][j] = copyM.data[i][j];
            }
        }

        double deter = la.DblDeterminant(n, failure);

        outs << deter << endl;

        for (size_t i = 0; i < m; i++)
        {
            la.B.data[i] = copyB.data[i];

            for (size_t j = 0; j < n; j++)
            {
                la.M.data[i][j] = copyM.data[i][j];
            }
        }

        if (!la.DblInverse(n, A, pivot))
        {
            cout << "Conte Gaussian inverse matrix failure!" << endl;
            exit(-104);
        }

        else
            A.OutputMatrix(outs, ' ', 5, 8);
    }

    inps.close();
    outs.close();
}
2
2
1	1
1	2
7	11
2
2
1	1
1	3
7	11
2
2
6	3
4	8
5	6
2
2
5	3
10	4
8	6
3
3
2	1	-1
-3	-1	2
-2	1	2
8	-11	-3
       3	       4	
       3	       4	
1
       2	      -1	
      -1	       1	
       5	       2	
       5	       2	
2
     1.5	    -0.5	
    -0.5	     0.5	
 0.61111	 0.44444	
 0.61111	 0.44444	
36
 0.22222	-0.11111	
-0.083333	 0.16667	
    -1.4	       5	
    -1.4	       5	
-10
    -0.4	       1	
     0.3	    -0.5	
       2	       3	      -1	
       2	       3	      -1	
1
       4	       5	      -2	
       3	       4	      -2	
      -1	      -1	       1	

Huffman Compression in C++ Implemented by James Pate Williams, Jr.

The original string is:
abbbccddeefffghhhhijkllmm

# characters = 25
The compressed codes and frequencies are:
  0     e         2
  1     l         2
  2     f         3
  3     b         3
  4     i         1
  5     c         2
  6     g         1
  7     a         1
  8     d         2
  9     m         2
 10     k         1
 11     j         1
 12     h         4
# leaf nodes = 13
% compressed = 48

C:\Users\james\source\repos\HuffmanCodes\Debug\HuffmanCodes.exe (process 36772) exited with code 0.
Press any key to close this window . . .
// Algorithm is found in the textbook
// "Introduction to Algorithms"
// by Thomas H. Cormen, Charles E.
// Leiserson, Ronald L. Rivest p. 340

#include "pch.h"

int leafNodes = 0;

void InorderTraversal(BinaryTreeNode<CharFreq>* node)
{
    if (node != NULL)
    {
        InorderTraversal(node->lt);

        if (node->lt == NULL && node->rt == NULL)
        {
            CharFreq cf = node->data;

            std::cout << setw(3) << leafNodes << '\t';
            std::cout << cf.ch << '\t';
            std::cout << setw(3) << cf.freq << '\n';
            leafNodes++;
        }
        
        InorderTraversal(node->rt);
    }
}

int main()
{
    int f[128] = { 0 };
    string str = "abbbccddeefffghhhhijkllmm";
    BinaryTreeNode<CharFreq> charFreqTree;
    vector<BinaryTreeNode<CharFreq>> v;

    std::cout << "The original string is: " << endl;
    std::cout << str << endl << endl;

    for (size_t i = 0; i < strlen(str.c_str()); i++)
    {
        bool found = false;
        char ch = str.c_str()[i];

        for (auto iter = v.begin(); !found &&
            iter != v.end(); iter++)
        {
            BinaryTreeNode<CharFreq> node = *iter;

            if (node.data.ch == ch)
            {
                node.data.freq++;
                *iter = node;
                found = true;
            }
        }

        if (!found)
        {
            BinaryTreeNode<CharFreq> node;

            node.data.ch = ch;
            node.data.freq = 1;
            node.lt = node.rt = NULL;
            v.push_back(node);
        }
    }

    priority_queue<BinaryTreeNode<CharFreq>, vector<BinaryTreeNode<CharFreq>>,
        greater<BinaryTreeNode<CharFreq>>> Q(v.begin(), v.end());

    size_t n = Q.size();
   
    for (size_t i = 0; i < n - 1; i++)
    {
        BinaryTreeNode<CharFreq>* x = new
            BinaryTreeNode<CharFreq>();
        BinaryTreeNode<CharFreq>* y = new
            BinaryTreeNode<CharFreq>();
        *x = Q.top();
        Q.pop();
        *y = Q.top();
        Q.pop();

        CharFreq charFreq;
        charFreq.ch = (char)(x->data.ch + y->data.ch);
        charFreq.freq = x->data.freq + y->data.freq;

        BinaryTreeNode<CharFreq>* z = new
            BinaryTreeNode<CharFreq>(charFreq, x, y);

        Q.push(*z);
    }

    BinaryTreeNode<CharFreq> root = Q.top();
    std::cout << "# characters = " << strlen(str.c_str()) << endl;
    std::cout << "The compressed codes and frequencies are:" << endl;
    InorderTraversal(&root);
    std::cout << "# leaf nodes = " << leafNodes << endl;
    std::cout << "% compressed = " <<
        (100.0 - 100.0 * ((double)leafNodes) / strlen(str.c_str())) << endl;
    return 0;
}
#pragma once
#include "pch.h"
using namespace std;

template <class T>
	class BinaryTreeNode
	{
	public:
		T data;
		BinaryTreeNode* lt;
		BinaryTreeNode* rt;

		BinaryTreeNode() { 
			lt = rt = nullptr;
		};

		BinaryTreeNode(T data)
		{
			this->data = data;
			lt = rt = nullptr;
		};

		BinaryTreeNode(T data, BinaryTreeNode* lt, BinaryTreeNode* rt)
		{
			this->data = data;
			this->lt = lt;
			this->rt = rt;
		};

		friend bool operator > (BinaryTreeNode lhs, BinaryTreeNode rhs)
		{
			return lhs.data > rhs.data;
		};

		friend bool operator < (BinaryTreeNode lhs, BinaryTreeNode rhs)
		{
			return lhs.data < rhs.data;
		};

		friend bool operator == (BinaryTreeNode lhs, BinaryTreeNode rhs)
		{
			return lhs.data == rhs.data;
		};
	};
#pragma once
class CharFreq
{
public:
	char ch;
	int freq;
	
	CharFreq()
	{
		ch = '\0';
		freq = 0;
	};
	CharFreq(char c)
	{
		ch = c;
		freq = 0;
	};
	CharFreq(char c, int f)
	{
		ch = c;
		freq = f;
	};

	friend int operator - (CharFreq lhs, CharFreq rhs)
	{
		return lhs.freq - rhs.freq;
	}

	friend bool operator > (CharFreq lhs, CharFreq rhs)
	{
		return lhs.freq > rhs.freq;
	};

	friend bool operator < (CharFreq lhs, CharFreq rhs)
	{
		return lhs.freq < rhs.freq;
	};

	friend bool operator == (CharFreq lhs, CharFreq rhs)
	{
		return lhs.freq == rhs.freq && lhs.ch == rhs.ch;
	};
};
// pch.h: This is a precompiled header file.
// Files listed below are compiled only once, improving build performance for future builds.
// This also affects IntelliSense performance, including code completion and many code browsing features.
// However, files listed here are ALL re-compiled if any one of them is updated between builds.
// Do not add files here that you will be updating frequently as this negates the performance advantage.

#ifndef PCH_H
#define PCH_H

// add headers that you want to pre-compile here
#include "BinaryTreeNode.h"
#include "CharFreq.h"
#include <iomanip>
#include <iostream>
#include <list>
#include <queue>
#include <string>
using namespace std;
#endif //PCH_H

Infix Notation to Postfix Notation and Postfix Evaluator Implemented by James Pate Williams, Jr.

I translated a Pascal program that is found in “Applied Data Structures Using Pascal” by Guy J. Hale and Richard J. Easton. The original Pascal program only used single digits and four arithmetic operators: ‘*’, ‘/’, ‘+’, and ‘-‘. I extended the code to multiple digit positive integers and added an exponentiation operator ‘^’. The priority of the operators is ‘^’, ‘*’, and ‘/’ highest value and ‘+’ and ‘-‘ lowest priority. I could easily add a modulus operator ‘%’ and Boolean bit operators. Extension to negative integers should be a facile operation. Below is the output from my C++ application.

3 + 7 * 8 - 5
3 7 8 * + 5 - 
Positive integer value = 54
3 * 7 - 4 / 2
3 7 * 4 2 / - 
Positive integer value = 19
(3 + 7) * 8 - 5
3 7 + 8 * 5 - 
Positive integer value = 75
(3 + 4) * 8 - (7 * 3 - 4)
3 4 + 8 * 7 3 * 4 - - 
Positive integer value = 39
(100 + 50) * 20 - 100 / 2
100 50 + 20 * 100 2 / - 
Positive integer value = 2950
2 ^ 16 - 5 * 100
2 16 ^ 5 100 * - 
Positive integer value = 65036

#pragma once
#include <list>
#include <stack>
#include <string>
#include <vector>
using namespace std;

const char Exp = '^';
const char Mul = '*';
const char Div = '/';
const char Add = '+';
const char Sub = '-';
const char LtParen = '(';
const char RtParen = ')';

class InfixToPostFix
{
public:
	stack<char> numberStack;
	
	int Convert(
		string infixStr, string& postfixStr);
	int EvaluatePostFix(string postfixStr);
	int Priority(char opcode);
};
#include "pch.h"
#include "InfixToPostFix.h"
#include <vector>
using namespace std;

int InfixToPostFix::Convert(
	string infixStr, string& postfixStr)
{
	char ch = 0;
	int number = 0, opcode = 0, opcode1 = 0, parenLevel = 0;
	string numberStr;

	for (size_t i = 0; i < infixStr.size();)
	{
		//while (i < infixStr.size() && infixStr[i] == ' ')
			//i++;

		while (i < infixStr.size() && infixStr[i] >= '0' &&
			infixStr[i] <= '9')
			numberStr.push_back(infixStr[i++]);

		if (numberStr.size() != 0)
		{
			for (size_t j = 0; j < numberStr.size(); j++)
				postfixStr.push_back(numberStr[j]);

			postfixStr.push_back(' ');
			numberStr.clear();
		}

		//while (i < infixStr.size() && infixStr[i] == ' ')
			//i++;

		if (infixStr[i] == '(')
		{
			numberStack.push(infixStr[i]);
			parenLevel++;
		}

		//while (i < infixStr.size() && infixStr[i] == ' ')
			//i++;

		if (infixStr[i] == ')')
		{
			ch = numberStack.top();
			numberStack.pop();

			parenLevel--;

			//while (i < infixStr.size() && infixStr[i] == ' ')
				//i++;

			while (ch != '(')
			{
				postfixStr.push_back(ch);
				postfixStr.push_back(' ');

				parenLevel++;

				ch = numberStack.top();
				numberStack.pop();
			}
		}

		//while (i < infixStr.size() && infixStr[i] == ' ')
			//i++;

		if (infixStr[i] == '^' || infixStr[i] == '*' ||
			infixStr[i] == '/' || infixStr[i] == '+' ||
			infixStr[i] == '-')
		{
			if (numberStack.empty())
				numberStack.push(infixStr[i]);
			else
			{
				ch = numberStack.top();
				numberStack.pop();

				//while (i < infixStr.size() && infixStr[i] == ' ')
					//i++;

				while (Priority(ch) >= Priority(infixStr[i]) &&
					!numberStack.empty() && ch != '(')
				{
					postfixStr.push_back(ch);
					postfixStr.push_back(' ');

					ch = numberStack.top();
					numberStack.pop();
				}

				//while (i < infixStr.size() && infixStr[i] == ' ')
					//i++;

				if (ch != '(')
				{
					if (Priority(infixStr[i]) <= Priority(ch))
					{
						postfixStr.push_back(ch);
						postfixStr.push_back(' ');

						numberStack.push(infixStr[i]);
					}

					else
					{
						numberStack.push(ch);
						numberStack.push(infixStr[i]);
					}
				}
				else
				{
					numberStack.push(ch);
					numberStack.push(infixStr[i]);
				}
			}
		}

		i++;
	}

	while (!numberStack.empty())
	{
		ch = numberStack.top();
		numberStack.pop();

		postfixStr.push_back(ch);
		postfixStr.push_back(' ');
	}

	return 0;
}

int InfixToPostFix::EvaluatePostFix(string postfixStr)
{
	char opcode = 0;
	int charValue = 0, result = 0, value1 = 0, value2 = 0;
	stack<int> intStack;

	for (size_t i = 0; i < postfixStr.size();)
	{
		string numberStr;

		if (postfixStr[i] != ' ')
		{
			while (postfixStr[i] >= '0' && postfixStr[i] <= '9')
				numberStr.push_back(postfixStr[i++]);

			if (!numberStr.empty())
				intStack.push(atoi(numberStr.c_str()));

			else
			{
				value2 = intStack.top();
				intStack.pop();
				value1 = intStack.top();
				intStack.pop();

				opcode = postfixStr[i++];

				if (opcode == '^')
					result = (int)pow(value1, value2);
				else if (opcode == '*')
					result = value1 * value2;
				else if (opcode == '/')
					result = value1 / value2;
				else if (opcode == '+')
					result = value1 + value2;
				else if (opcode == '-')
					result = value1 - value2;

				intStack.push(result);
			}
		}

		else
			i++;
	}

	result = intStack.top();
	intStack.pop();

	return result;
}

int InfixToPostFix::Priority(char opcode)
{
	int result = 0;

	switch (opcode)
	{
	case Exp:
		result = 2;
		break;
	case Mul:
		result = 2;
		break;
	case Div:
		result = 2;
		break;
	case Add:
		result = 1;
		break;
	case Sub:
		result = 1;
		break;
	case LtParen:
		result = 0;
	}

	return result;
}
#include "pch.h"
#include "InfixToPostFix.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

int main()
{
    fstream inps, outs;
    char line[256];
    
    inps.open("TestFile.txt", fstream::in);
    outs.open("ResuFile.txt", fstream::out | fstream::ate);

    while (!inps.eof())
    {
        string postfixStr;

        inps.getline(line, 256);

        if (strlen(line) == 0)
            break;

        string infixStr(line, strlen(line));
        InfixToPostFix translate;

        int con = translate.Convert(
            infixStr, postfixStr);

        if (con != 0)
        {
            cout << "Conversion error!" << endl;
            cout << "Error code = " << con << endl;
        }

        else
        {
            char newline[] = { '\n' };

            outs.write(infixStr.c_str(), infixStr.size());
            outs.write(newline, 1);
            outs.write(postfixStr.c_str(), postfixStr.size());
            outs.write(newline, 1);

            int val = translate.EvaluatePostFix(postfixStr);

            if (val < 0)
            {
                cout << "Evaluation error!" << endl;
                cout << "Error code = " << val << endl;
            }

            else
            {
                char buffer[256] = { '\0' };
                string str = "Positive integer value = ";

                _itoa_s(val, buffer, 10);
                
                outs.write(str.c_str(), strlen(str.c_str()));
                outs.write(buffer, strlen(buffer));
                outs.write(newline, 1);
            }
        }
    }

    inps.close();
    outs.close();

    return 0;
}

Arithmetic Expression Evaluator in C++ Implemented by James Pate Williams, Jr.

I translated to C++ and enhanced a Pascal arithmetic expression evaluator program found in “Applied Data Structures Using Pascal” by Guy J. Hale and Richard E. Easton. The original code used single digit numbers. As an exercise I enhanced the application to utilize multiple digit numbers. Below is my test file and output from my program. I used the C++ standard library stack data structure.

20 + 3 * 4 + 50 * 4 * 2 + 6 * 2 - 8 / 2 + 2 ^ 5
#pragma once
#include <fstream>
#include <stack>
using namespace std;

class Expression
{
public:
	char ch, sign, termOp;
	int number;

	stack<int> stk;

	void GetChar(fstream& inps);
	void GetExpression(fstream& inps);
	void GetFactor(fstream& inps);
	void GetTerm(fstream& inps);
};
#include "pch.h"
#include "Expression.h"
#include <math.h>
#include <fstream>
#include <stack>
#include <string>
using namespace std;

void Expression::GetChar(
	fstream& inps)
{
	while (!inps.eof())
	{
		ch = (char)inps.get();

		if (inps.eof())
			exit(1);

		if (ch >= '0' && ch <= '9')
			return;

		if (ch == '^' || ch == '*' || ch == '/')
			return;

		if (ch == '+' || ch == '-')
			return;

		if (ch == ' ' || ch == '\t' || ch == '\n')
			continue;

		if (ch == ';')
			return;
	}
}

void Expression::GetExpression(fstream& inps)
{
	int num, num1, num2;

	if (ch == '+' || ch == '-')
	{
		sign = ch;

		GetChar(inps);		
		GetTerm(inps);

		if (sign == '-')
		{
			num = stk.top();
			stk.pop();
			num = -num;
			stk.push(num);
		}
	}

	GetTerm(inps);
	
	while (ch == '+' || ch == '-')
	{
		termOp = ch;
		
		GetChar(inps);
		GetTerm(inps);
		
		num2 = stk.top();
		stk.pop();
		num1 = stk.top();
		stk.pop();

		if (termOp == '+')
			num = num1 + num2;
		else
			num = num1 - num2;

		stk.push(num);
	}
}

void Expression::GetFactor(fstream& inps)
{
	if (ch >= '0' && ch <= '9')
	{
		string str;

		while (ch >= '0' && ch <= '9' && !inps.eof())
		{
			str += ch;
			ch = (char)inps.get();

			if (ch == ' ' || ch == '\t' || ch == '\n')
				break;

			else if (ch == '^' || ch == '+' || ch == '-' ||
				ch == '*' || ch == '/')
				break;
		}

		if (inps.eof())
			exit(-1);

		while (ch == ' ' || ch == '\t' || ch == '\n')
			ch = (char)inps.get();

		number = atoi(str.c_str());
		stk.push(number);
		return;
	}
	else
	{
		GetChar(inps);
		GetExpression(inps);
		GetChar(inps);
	}
}

void Expression::GetTerm(fstream& inps)
{
	char factOp;
	int num, num1, num2;

	GetFactor(inps);

	while (ch == '*' || ch == '/' || ch == '^')
	{
		factOp = ch;

		GetChar(inps);
		GetFactor(inps);

		num2 = stk.top();
		stk.pop();
		num1 = stk.top();
		stk.pop();

		if (factOp == '*')
			num = num1 * num2;
		else if (factOp == '/')
			num = num1 / num2;
		else if (factOp == '^')
			num = (int)pow(num1, num2);

		stk.push(num);
	}
}
#include "pch.h"
#include "Expression.h"
#include <fstream>
#include <iostream>
using namespace std;

int main()
{
    bool validExp;
    int expVal;
    fstream inps;
    Expression ex;

    inps.open("TestExp.txt", fstream::in);
    
    if (!inps.eof())
    {
        validExp = true;
        ex.GetChar(inps);
        ex.GetExpression(inps);
        expVal = ex.stk.top();
        ex.stk.pop();
        cout << "Value = " << expVal << endl;
    }

    else
    {
        validExp = false;
        expVal = 0;
    }

    return 0;
}

An Assignment Statement Syntactic Scanner for a Language resembling ADA or Pascal Implemented by James Pate Williams, Jr.

I am working my way through two compiler textbooks: “Design of Compilers Techniques of Programming Language Translation” by Karen A. Lemone and “Modern Compiler Implementation in Java” by Andrew W. Appel. My first exercise is a single line by line assignment statement parser.

Here is my source code and my translation structures:

X1:=a+bb*12;
X2:=a/2+bb*12;

Identifiers:
X1
a
bb
Literals:
12
Operators:
:=
+
*
Punctuation:
;

Identifiers:
X2
a
bb
Literals:
2
12
Operators:
:=
/
+
*
Punctuation:
;
#pragma once
#include "RegularExpAssignStm.h"
#include <string>
#include <vector>
using namespace std;

class RegularExpAssignStm
{
public:
	string punctuation[3] = { ";", "(", ")" };
	string upperCase =
		"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
	string lowerCase =
		"abcdefghijklmnopqrstuvwxyz";
	string dig = "0123456789";
	string ops[5] = { "+", "-", "*", "/", ":="};
	vector<string> identifier;
	vector<string> liter;
	vector<string> oper;
	vector<string> punc;

	RegularExpAssignStm() {	};
	bool IdContains(char key);
	size_t Search(size_t pos, string key, string match);
	size_t SingleCharSearch(char key, size_t index, string match[]);
	bool GetIdentifier(string assignStm);
	bool GetLiteral(string assignStm);
	bool Parse(string assignStm);
};

#include "pch.h"
#include "RegularExpAssignStm.h"
#include <functional>
#include <iostream>
#include <string>
using namespace std;

bool RegularExpAssignStm::IdContains(char key)
{
	bool dg = false, uc = false, lc = false;

	for (size_t i = 0; !uc && i < upperCase.size(); i++)
		uc = key == upperCase[i];

	if (uc)
		return true;

	for (size_t i = 0; !lc && i < lowerCase.size(); i++)
		lc = key == lowerCase[i];

	if (lc)
		return true;

	for (size_t i = 0; !dg && i < dig.size(); i++)
		dg = key == dig[i];

	if (dg)
		return true;

	return false;
}

size_t RegularExpAssignStm::Search(size_t pos, string key, string match)
{
	bool found = false;
	size_t i;

	for (i = 0; !found && i < match.size(); i++)
		found = key[pos] == match[i];

	if (!found)
		i = 4294967295;
	else
		i--;

	return i;
}

size_t RegularExpAssignStm::SingleCharSearch(
	char key, size_t index, string match[])
{
	bool found = false;
	size_t i;

	for (i = 0; !found && i < match[index].size(); i++)
		found = key == match[index].c_str()[i];

	if (!found)
		i = 4294967295;
	else
		i--;

	return i;
}

bool RegularExpAssignStm::GetIdentifier(string assignStm)
{
	string idStr;

	for (size_t i = 0; i < dig.size(); i++)
		if (assignStm[0] == dig[i])
			return false;

	for (size_t i = 0; i < assignStm.size(); i++)
	{
		if (IdContains(assignStm[i]))
			idStr.push_back(assignStm[i]);
		else
			break;
	}

	if (idStr.size() > 0)
		identifier.push_back(idStr);

	return idStr.size() > 0;
}

bool RegularExpAssignStm::GetLiteral(string assignStm)
{
	bool start = false;
	string litStr;

	for (size_t i = 0; !start && i < assignStm.size(); i++)
	{
		if (assignStm[0] == dig[i])
			start = true;
	}
	
	if (start)
	{
		liter.push_back("");

		for (size_t i = 0; i < assignStm.size(); i++)
		{
			if (assignStm[i] >= '0' && assignStm[i] <= '9')
				liter[liter.size() - 1].push_back(assignStm[i]);
			else
				return liter.size() > 0;
		}
	}

	return false;
}

bool RegularExpAssignStm::Parse(string assignStm)
{
	if (GetIdentifier(assignStm))
		assignStm.erase(0, identifier[identifier.size() - 1].size());
	else
		return false;

	size_t assignOpPos = Search(0, assignStm, ops[4]);

	if (assignOpPos != 4294967295)
	{
		assignStm.erase(0, ops[4].size());
		oper.push_back(ops[4]);
	}

	else
		return false;

	while (true)
	{
		if (GetLiteral(assignStm))
		{
			assignStm.erase(0, liter[liter.size() - 1].size());

			if (assignStm.size() <= 0)
				return false;
		}

		else if (GetIdentifier(assignStm) &&
			identifier[identifier.size() - 1].size() != 0)
		{
			assignStm.erase(0, identifier[identifier.size() - 1].size());
			
			if (assignStm.size() <= 0)
				return false;
		}

		size_t plusPos, minusPos, timesPos, divPos;

		plusPos = SingleCharSearch(assignStm[0], 0, ops);
		minusPos = SingleCharSearch(assignStm[0], 1, ops);
		timesPos = SingleCharSearch(assignStm[0], 2, ops);
		divPos = SingleCharSearch(assignStm[0], 3, ops);

		if (plusPos != 4294967295)
		{
			oper.push_back(ops[0]);
			assignStm.erase(0, 1);
		}
		else if (minusPos != 4294967295)
		{
			oper.push_back(ops[1]);
			assignStm.erase(0, 1);
		}
		else if (timesPos != 4294967295)
		{
			oper.push_back(ops[2]);
			assignStm.erase(0, 1);
		}
		else if (divPos != 4294967295)
		{
			oper.push_back(ops[3]);
			assignStm.erase(0, 1);
		}
		else
			return false;

		if (assignStm.size() <= 0)
			return false;

		if (GetLiteral(assignStm))
		{
			assignStm.erase(0, liter[liter.size() - 1].size());
			
			if (assignStm.size() <= 0)
				return false;
		}

		else if (GetIdentifier(assignStm) &&
			identifier[identifier.size() - 1].size() != 0)
		{
			assignStm.erase(0, identifier[identifier.size() - 1].size());
			
			if (assignStm.size() <= 0)
				return false;
		}

		size_t puns = SingleCharSearch(assignStm[0], 0, punctuation);

		if (puns != 4294967295)
		{
			punc.push_back(punctuation[puns]);
			assignStm.erase(0, punc[punc.size() - 1].size());

			if (assignStm.size() <= 0)
				return false;
		}
	}

	return true;
}

Create an Index Using C++ and the Map Data Structure Designed and Implemented by James Pate Williams, Jr.

I recall that way back in the early to mid-1980s I had the pleasure of perusing a copy of the source code for a Pascal compiler. It was probably created directly under the inventor Nicklaus Wirth in Switzerland. I partially implemented a Pascal emulator for a Data General Eclipse minicomputer.

Here are some of the phases required for the creation of a Pascal computer program:

  1. Parse the source code.
  2. Create a symbol table.
  3. Interpret the symbols.
  4. Create P-Code for the interpreter.

Running the interpreter code involves translation of the P-Code to a computer readable bit string. Every computer scientist should at some time in her/his formal education should implement an assembler and a compiler.

Yesterday, April 11, 2023, I created a word index C++ application that takes a text file, parses the words, and creates an index also known as an English language symbol table. The app utilizes a C++ map that consists of integer keys and a node containing information about the words and their order in the text file. Below are the indexable text file and the symbol table (index).

This is a test of my index generator. The text file has

two lines. The second line is dummy definitions.

This is a test of my index generator. The text file has
two lines. The second line is dummy definitions.
The first number is the line number and the second the position within a line.

The         1             39          
The         2             12          
This        1             1            
a              1             9            
definitions           2             37          
dummy 2             31          
file          1             48          
generator            1             28          
has         1             53          
index     1             22          
is             2             28          
is             1             6            
line         2             23          
lines       2             5            
my          1             19          
of            1             16          
second  2             16          
test        1             11          
text        1             43          
two        2             1