Henri Cohen’s Brent’s Modification of the Pollard rho Factorization Method Implemented by James Pate Williams, Jr.

I implemented the algorithm in C using unsigned 64-bit integers. This method is good for integers of around 18 decimal digits in length. For comparison I tested against my blazingly fast Shor’s classical factoring algorithm which works on arbitrarily large integers of around 50 to 60 or more decimal digits.

Henri Cohen’s Trial Division Algorithm Implemented by James Pate Williams, Jr.

I implemented this algorithm for C long (32-bit) number in 1997, C# big integers in approximately 2015 or 2016, and C unsigned long long (64-bit) integers in March, 2023.

/*
Author:  Pate Williams (c) 1997 - 2023

"Algorithm 8.1.1 (Trial Division). We assume given
a table of prime numbers p[1] = 2, p[2] = 3,..., p[k],
with k > 3, an array t <- [6, 4, 2, 4, 4, 6, 2], and
an index j such that if p[k] mod 30 is equal to
1, 7, 11, 13, 17, 19, 23 or 29 then j is equal to
0, 1, 2, 3, 4, 5, 6 or 7 respectively. Finally, we
give ourselves an upper bound B such that B >= p[k],
essentially to avoid spending too much time. Then
given a positive integer N, this algorithm tries to
factor (or split N) and if it fails, N will be free
of prime factors less than or equal to B."
-Henri Cohen-
See "A Course in Computational Algebraic Number
Theory" by Henri Cohen page 420.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define BITS_PER_LONG   32
#define BITS_PER_LONG_1 31
#define MAX_SIEVE 100000000L
#define LARGEST_PRIME 99999989L
#define SIEVE_SIZE (MAX_SIEVE / BITS_PER_LONG)

typedef unsigned long long ull;

struct factor { int expon;  ull prime; };
long *prime, sieve[SIEVE_SIZE];

int get_bit(long i, long *sieve) {
	long b = i % BITS_PER_LONG;
	long c = i / BITS_PER_LONG;

	return (sieve[c] >> (BITS_PER_LONG_1 - b)) & 1;
}

void set_bit(long i, long v, long *sieve) {
	long b = i % BITS_PER_LONG;
	long c = i / BITS_PER_LONG;
	long mask = 1 << (BITS_PER_LONG_1 - b);

	if (v == 1)
		sieve[c] |= mask;
	else
		sieve[c] &= ~mask;
}

void Sieve(long n, long *sieve) {
	int c, i, inc;

	set_bit(0, 0, sieve);
	set_bit(1, 0, sieve);
	set_bit(2, 1, sieve);
	for (i = 3; i <= n; i++)
		set_bit(i, i & 1, sieve);
	c = 3;
	do {
		i = c * c, inc = c + c;
		while (i <= n) {
			set_bit(i, 0, sieve);
			i += inc;
		}
		c += 2;
		while (!get_bit(c, sieve)) c++;
	} while (c * c <= n);
}

void get_bits(ull b, int *number, int *bits) {
	int i = 0;
	do {
		bits[i++] = b % 2;
		b = b / 2;
	} while (b > 0);
	*number = i;
}

 ull pow_mod(
	 ull x,
	 ull b, 
	 ull n) {
	// Figure 4.4 in "Cryptography Theory and Practice"
	// by Douglas R. Stinson page 127
	int bits[64], i, l;
	ull z = 1, s = 0;

	get_bits(b, &l, bits);
	s = bits[l - 1];
	for (i = l - 2; i >= 0; i--)
		s = 2 * s + bits[i];
	if (b != s) {
		printf("Error in pow_mod function\n");
		exit(-1);
	}
	for (i = l - 1; i >= 0; i--) {
		z = (z * z) % n;
		if (bits[i] == 1)
			z = (z * x) % n;
	}
	return z;
}

ull rand_ull(void) {
	ull r = 0;
	for (int i = 0; i < 64; i += 15 /*30*/) {
		r = r * ((ull)RAND_MAX + 1) + rand();
	}
	return r;
}

int Miller_Rabin(ull n, int t) {
	// returns 1 for prime
	// returns 0 for composite
	// "Handbook of Applied Cryptography"
	// Alfred J. Menezes among others
	// 4.24 Algorithm page 139
	int i, j, s = 0;
	ull a, n1 = n - 1, r, y;

	r = n1;
	while ((r % 2) == 0) {
		s++;
		r /= 2;
	}
	for (i = 0; i < t; i++)
	{
		while (true)
		{
			a = rand_ull() % n;
			
			if (a >= 2 && a <= n - 2)
				break;
		}
		y = pow_mod(a, r, n);
		if (y != 1 && y != n1) {
			j = 1;
			while (j <= s - 1 && y != n1) {
				y = (y * y) % n;
				if (y == 1)
					return 0;
				j++;
			}
			if (y == n1)
				return 0;
		}
	}
	return 1;
}

int trial_division(ull *N, long *prime,
	struct factor *f, int *count) {
	int found;
	ull B, d;
	int e, i, j = 0, k, m, n;
	int t[8] = { 6, 4, 2, 4, 2, 4, 6, 2 };
	int table[8] = { 1, 7, 11, 13, 17, 19, 23, 29 };
	ull l, r;

	if (*N <= 5) {
		*count = 1;
		f[0].expon = 1;
		switch (*N) {
		case 1: f[0].prime = 1; break;
		case 2: f[0].prime = 2; break;
		case 3: f[0].prime = 3; break;
		case 4: f[0].expon = 2; f[0].prime = 2; break;
		case 5: f[0].prime = 5; break;
		}
		return 1;
	}
	*count = 0;
	B = LARGEST_PRIME;
	i = -1, l = (ull)sqrt((double)*N), m = -1;
L2:
	m++;
	if (i == MAX_SIEVE) {
		i = j - 1;
		goto L5;
	}
	d = prime[m];
	k = d % 30;
	found = 0;
	for (n = 0; !found && n < 8; n++) {
		found = k == table[n];
		if (found) j = n;
	}
L3:
	r = *N % d;
	if (r == 0) {
		e = 0;
		do {
			e++;
			*N /= d;
		} while (*N % d == 0);
		f[*count].expon = e;
		f[*count].prime = d;
		*count = *count + 1;
		if (*N == 1) return 1;
		goto L2;
	}
	if (d >= l) {
		if (*N > 1) {
			f[*count].expon = 1;
			f[*count].prime = *N;
			*count = *count + 1;
			*N = 1;
			return 1;
		}
	}
	else if (i < 0) goto L2;
L5:
	i = (i + 1) % 8;
	d = d + t[i];
	if (d > B) return 0;
	goto L3;
}

int main(void) {
	char e_buffer[256], n_buffer[256] = { 0 };
	long k, e_length, n_length = 0, valid;
	double time_spent;
	int count;
	long i, p = 2;
	ull largest_prime;
	long prime_count = 0;
	ull N, sqrtN;
	struct factor f[32];
	clock_t begin, end;

	begin = clock();
	Sieve(MAX_SIEVE, sieve);
	for (p = 2; p < MAX_SIEVE; p++) {
		while (!get_bit(p, sieve))
			p++;
		prime_count++;
	}
	prime_count--;
	prime = (long*)malloc(prime_count * sizeof(long));
	i = 0;
	p = 2;
	while (i < prime_count)
	{
		while (!get_bit(p, sieve))
			p++;
		prime[i++] = p++;
	}
	largest_prime = LARGEST_PRIME;
	printf("Largest prime = %I64u\n", largest_prime);
	end = clock();
	time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
	printf("Time to create prime number sieve in seconds %lf\n", time_spent);
	for (;;) {
		printf("N = ");
		scanf_s("%s", e_buffer, 256);
		e_length = strlen(e_buffer);
		n_length = 0;
		valid = 1;
		for (k = 0; valid && k < e_length; k++) {
			if (e_buffer[k] >= '0' &&
				e_buffer[k] <= '9' ||
				e_buffer[k] == ',') {
				if (e_buffer[k] != ',') {
					n_buffer[n_length++] = e_buffer[k];
				}
			}
			else {
				valid = 0;
			}
		}
		if (!valid) {
			printf("Invalid character must in set {0, 1, ..., 9, ',')\n");
			continue;
		}
		else {
			n_buffer[n_length] = '\0';
			N = atoll(n_buffer);
			sqrtN = (ull)sqrt((double)N);
			if (sqrtN > largest_prime) {
				printf("Number is too large!\n");
				printf("Square root %I64u must be < %I64u\n", sqrtN, largest_prime);
				continue;
			}
		}
		if (N <= 0) break;
		trial_division(&N, prime, f, &count);
		printf("Non-trivial factors:\n");
		for (i = 0; i < count; i++) {
			printf("%I64u", f[i].prime);
			if (f[i].expon > 1) printf(" ^ %ld\n", f[i].expon);
			else printf("\n");
		}
		if (N != 1)
		{
			if (Miller_Rabin(N, 20) == 1)
				printf("Residue is a prime number\n");
			else
				printf("Last factor is composite\n");
		}
		else
			printf("Number was completely factored\n");
	}
	return 0;
}