The first table is based on Conte-de Boor Fourth Runge-Kutta formulas that I converted to Fifth Order Runge-Kutta. Initial values: V = 2600 feet per second angle of elevation 30 degrees diameter 16 inches coefficient of form 0.61 density ratio 1.00 are from LCDR Ernest Edward Herrmann’s Exterior ballistics, 1935 My results are given first then LCDR Herrmann’s results:
| x | deg | min | sec | time | v | vx | vy | y |
|---|---|---|---|---|---|---|---|---|
| 0 | 30 | 0 | 0 | 0.00 | 2600 | 2252 | 1300 | 0 |
| 563 | 29 | 50 | 45 | 0.25 | 2578 | 2236 | 1283 | 325 |
| 1122 | 29 | 41 | 24 | 0.50 | 2556 | 2221 | 1266 | 646 |
| 1677 | 29 | 31 | 57 | 0.75 | 2535 | 2206 | 1250 | 962 |
| 2229 | 29 | 22 | 25 | 1.00 | 2515 | 2191 | 1233 | 1275 |
| 2776 | 29 | 12 | 47 | 1.25 | 2494 | 2177 | 1217 | 1583 |
| 3321 | 29 | 3 | 4 | 1.50 | 2474 | 2163 | 1201 | 1887 |
| 3861 | 28 | 53 | 15 | 1.75 | 2455 | 2149 | 1186 | 2188 |
| x | deg | min | sec | time | v | vx | vy | y |
|---|---|---|---|---|---|---|---|---|
| 0 | 30 | 0 | 0 | 0.00 | 2600 | 2252 | 1300 | 0 |
| 561 | 29 | 50 | 7 | 0.25 | 2582 | 2259 | 1285 | 323 |
| 1120 | 29 | 41 | 4 | 0.50 | 2564 | 2227 | 1270 | 642 |
| 1675 | 29 | 32 | 2 | 0.75 | 2546 | 2216 | 1255 | 958 |
| 2228 | 29 | 22 | 5 | 1.00 | 2529 | 2204 | 1241 | 1270 |
It is amazing how accurate Herrmann’s results were based on only a couple iterations using the Mayevski seven zone velocity retardation formulas.