On Wednesday, October 16, 2024, I bought an Amazon Kindle book named “Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory” by Attila Szabo and Neil S. Ostlund. It cost me $10.69 which is a real bargain. In Appendix B there is a listing for a FORTRAN program to perform an ab initio Hartree-Fock Self Consistent Field calculation for a two-electron heteronuclear molecule namely the helium-hydrogen cation. I successfully translated the program from FORTRAN to C++. I had to remember that FORTRAN stores matrices in column major order and C/C++ stores matrices in row major order. I took the transposes of two FORTRAN COMMON matrices to get the correct C++ storage. The authors of the book did an extensive treatment of the test calculation. The application is only 823 lines of monolithic C++ source code. I used FORTRAN like array indexing starting at 1 instead of the C initial beginning index of 0. I think I will try to get in touch with the authors to get permission to post the source code and results on my blog.
P. S. I got permission from Dover Books to publish my source code and results. I think I will reconsider posting the C++ source code. The actual ground state energy of the cation is -2.97867. My calculation and the book’s computation are in percentage errors of about 4%. The book’s value is a little closer to the exact value than my result. The book calculation was done in FORTRAN double precision on a Digital Equipment Corporation PDP-10 minicomputer. My recreation of the book’s endeavor was executed on an Intel Itanium Core 7 and Windows 10 Professional machine using Win32 C++. The C++ compiler was from Microsoft Visual Studio 2019 Community Version.
Note I added a calculation for a homonuclear molecule, namely, the hydrogen diatomic molecule.