Blog Entry Monday, July 8, 2024, (c) James Pate Williams, Jr. Relatively Fast 64-bit Trial Division Using Henri Cohen’s Algorithm

The sieve of Eratosthenes handles primes up to an upper bound of 100,000,000. The number of primes is 5,761,455. Below are a few examples runs of the app. I have also created C source code for trial division and other factoring algorithms that use Professor Emeritus Arjen K. Lenstra’s Free Large Integer Package also known as lip.

Blog Entry Monday, June 24, 2024 (c) James Pate Williams, Jr. Computing Binomial Coefficients and Pascal’s Triangle in the C Language

Enter n (<= 18) below:
5

Enter k (<= 18) below:
0

1 1

Enter n (<= 18) below:
5

Enter k (<= 18) below:
1

5 5

Enter n (<= 18) below:
5

Enter k (<= 18) below:
2

10 10

Enter n (<= 18) below:
0
Enter n (<= 18) below:
0

Pascal's Triangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1
1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1
1 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1
1 18 153 816 3060 8568 18564 31824 43758 48620 43758 31824 18564 8568 3060 816 153 18 1

C:\Users\james\source\repos\BinomialCoefficeint\Debug\BinomialCoefficeint.exe (process 40028) exited with code 0.
Press any key to close this window . . .
// BinomialCoefficient.c (c) Monday, June 24, 2024
// by James Pate Williams, Jr. BA, BS, MSwE, PhD

#include <stdio.h>
#include <stdlib.h>
typedef long long ll;

ll** Binomial(ll n)
{
    ll** C = (ll**)calloc(n + 1, sizeof(ll*));

    if (C == NULL)
        exit(-1);

    for (int i = 0; i < n + 1; i++)
    {
        C[i] = (ll*)calloc(n + 1, sizeof(ll));

        if (C[i] == NULL)
            exit(-1);
    }

    if (n >= 0)
    {
        C[0][0] = 1;
    }

    if (n >= 1)
    {
        C[1][0] = 1;
        C[1][1] = 1;
    }

    if (n >= 2)
    {
        for (int i = 2; i <= n; i++)
        {
            for (int j = 2; j <= n; j++)
            {
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
            }
        }
    }

    return C;
}

ll Factorial(ll n)
{
    ll fact = 1;

    if (n > 1)
    {
        for (int i = 2; i <= n; i++)
            fact = i * fact;
    }

    return fact;
}

ll BC(ll n, ll k)
{
    return Factorial(n) / (Factorial(n - k) * Factorial(k));
}

int main()
{
    int i = 0, j = 0;
    ll** C = Binomial(20);

    while (1)
    {
        char buffer[256] = { '\0' };
        
        printf_s("Enter n (<= 18) below:\n");
        scanf_s("%s", buffer, sizeof(buffer));
        printf_s("\n");

        ll n = atoll(buffer);

        if (n == 0)
            break;

        printf_s("Enter k (<= 18) below:\n");
        scanf_s("%s", buffer, sizeof(buffer));
        printf_s("\n");

        ll k = atoll(buffer);
                
        printf_s("%lld\t%lld\n\n", C[n + 2][k + 2], BC(n, k));
    }

    printf_s("Pascal's Triangle:\n\n");

    for (i = 2; i <= 20; i++)
    {
        for (j = 2; j <= 20; j++)
            if (C[i][j] != 0)
                printf_s("%5lld ", C[i][j]);

        printf_s("\n");
    }

    for (i = 0; i <= 20; i++)
        free(C[i]);

    free(C);
}

Blog Entry Sunday, June 23, 2024 (c) James Pate Williams, Jr.

The object of this C Win32 application is to find a multiple of 9 with its digits summing to a multiple of 9 also. The first column below is a multiple of 9 whose digits sum to 9 also. The second column is the sum of digits found in the column one number. The last column is the first column divided by 9.

Enter PRNG seed:
1
Enter number of bits (4 to 16):
4
9 9 1
Enter number of bits (4 to 16):
5
27 9 3
Enter number of bits (4 to 16):
6
45 9 5
Enter number of bits (4 to 16):
7
117 9 13
Enter number of bits (4 to 16):
8
252 9 28
Enter number of bits (4 to 16):
0

C:\Users\james\source\repos\CProductOf9Console\Debug\CProductOf9Console.exe (process 23280) exited with code 0.
Press any key to close this window . . .
Enter PRNG seed:
1
Enter number of bits (4 to 16):
9
369 18 41
Enter number of bits (4 to 16):
10
846 18 94
Enter number of bits (4 to 16):
11
1080 9 120
Enter number of bits (4 to 16):
12
3015 9 335
Enter number of bits (4 to 16):
13
5040 9 560
Enter number of bits (4 to 16):
14
10350 9 1150
Enter number of bits (4 to 16):
15
30870 18 3430
Enter number of bits (4 to 16):
16
57798 36 6422
Enter number of bits (4 to 16):
0
// CProductOf9Console.c (c) Sunday, June 23, 2024
// by James Pate Williams, Jr., BA, BS, MSwE, PhD

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char nextStr[256], numbStr[256];

void ConvertToString(int number, int radix)
{
	int i = 0;

	while (number > 0)
	{
		nextStr[i++] = (char)(number % radix + '0');
		number /= radix;
	}

	nextStr[i++] = '\0';
	_strrev(nextStr);
}

int Sum(int next)
{
	long sum = 0;

	ConvertToString(next, 10);

	for (int i = 0; i < (int)strlen(nextStr); i++)
		sum += (long)nextStr[i] - '0';

	if (sum % 9 == 0 && sum != 0)
		return sum;

	return -1;
}

long GetNext(int numBits, int* next)
{
	long hi = 0, lo = 0, nine = 0;

	nextStr[0] = '\0';
	numbStr[0] = '\0';

	if (numBits == 4)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 16);

			if (*next != 0 && *next >= 8 && *next < 16)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 5)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 32);

			if (*next >= 16 && *next < 32)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 6)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 64);

			if (*next >= 32 && *next < 64)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 7)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 128);

			if (*next >= 64 && *next < 128)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 8)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 256);

			if (*next >= 128 && *next < 256)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 9)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 512);

			if (*next >= 256 && *next < 512)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 10)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 1024);

			if (*next >= 512 && *next < 1024)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 11)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 2048);

			if (*next >= 1024 && *next < 2048)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 12)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 4096);

			if (*next >= 2048 && *next < 4096)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 13)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 8192);

			if (*next >= 4096 && *next < 8192)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 14)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 16384);

			if (*next >= 8192 && *next < 16384)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 15)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 32768);

			if (*next >= 16384 && *next < 32768)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	else if (numBits == 16)
	{
		while (1)
		{
			*next = 9 * (long)(rand() % 65536);

			if (*next >= 32768 && *next < 65536)
			{
				nine = Sum(*next);

				if (nine % 9 == 0)
					return nine;
			}
		}
	}

	return -1;
}

int main()
{
	char buffer[256] = { '\0' };
	long seed = 0;

	printf_s("Enter PRNG seed:\n");
	scanf_s("%s", buffer, sizeof(buffer));
	seed = atol(buffer);
	srand((unsigned int)seed);

	while (1)
	{
		int next = 0, nine = 0, numberBits = 0;

		printf_s("Enter number of bits (4 to 16):\n");
		scanf_s("%s", buffer, sizeof(buffer));
		numberBits = atol(buffer);

		if (numberBits == 0)
			break;

		if (numberBits < 4 || numberBits > 16)
		{
			printf_s("illegal number of bits must >= 4 and <= 16\n");
			continue;
		}

		nine = GetNext(numberBits, &next);

		if (nine == -1)
		{
			printf_s("illegal result, try again\n");
			continue;
		}

		printf_s("%5ld\t%5ld\t%5ld\n", next, nine, next / 9);
	}

	return 0;
}

Blog Entry Tuesday, June 18, 2024 (c) James Pate Williams, Jr. FreeLIP Computation of Euler Numbers and Tangent Numbers

FreeLIP is a free large integer package solely created by Professor Emeritus Arjen K. Lenstra of the Number Field Sieve fame. He developed FreeLIP while he was an employee of AT&T – Lucent in the late 1980s. His copyright notice in the header file, lip.h, states copyright from 1989 to 1997. I have been using this excellent number theoretical package since the late 1990s. See the paper by Donald E. Knuth and Thomas J. Buckholtz for the formula for Tangent Numbers. I can’t remember where I got the Euler Numbers recurrence relation. I wrote a C# application in 2015 for computing Euler Numbers. The code below is in the vanilla C computer language. Excellent resources for the Euler and tangent numbers also known as zag numbers are:

https://oeis.org/A122045

https://oeis.org/A000182

Blog Entry Sunday, June 16, 2024 (c) James Pate Williams, Jr. Chapter 4 Matrices and Systems of Linear Equations from a Textbook by S. D. Conte and Carl de Boor

Blog Entry Friday, June 14, 2024 (c) James Pate Williams, Jr.

For the last week or so I have been working my way through Chapter 3 The Solution of Nonlinear Equations found in the textbook “Numerical Analysis: An Algorithmic Approach” by S. D. Conte and Carl de Boor. I also used some C source code from “A Numerical Library in C for Scientists and Engineers” by H. T. Lau, PhD. I implemented twenty examples and exercises from the previously mentioned chapter.

Blog Entry June 5-7, 2024, (c) James Pate Williams, Jr. All Applicable Rights Reserved Chapter 7 Example and Some Exercises from “Numerical Analysis: An Algorithmic Approach (c) 1980 by S. D. Conte and Carl de Boor (Numerical Differentiation and Numerical Integration)