Blog Entry © Monday August 4, 2025, by James Pate Williams, Jr. Bessel Functions of the First and Second Kind, Their Derivatives and Zeros

Blog Entry © Saturday, August 2, 2025, by James Pate Williams, Jr. Orthonormal Transverse Magnetic and Transverse Electric Fields Win32 Desktop C/C++ Application in the Release Configuration

Blog Entry © Friday, August 1, 2025, by James Pate Williams, Jr. Numerically Solving a Two-Dimensional Elliptic Partial Differential Equation (PDE) Boundary Value Problem (BVP) and a New MP3

Blog Entry © Thursday, July 31, 2025, Numerically Solving Four Second Order Linear Ordinary Differential Equation Boundary Value Problems by James Pate Williams, Jr.

Blog Entry (c) Wednesday, July 30, 2025, by James Pate Williams, Jr. Four Root Finding Algorithms and C Source

function exp(-x) - sin(0.5 * pi * x)
The interval found by bisection is:
a = +0.4435735341  b = +0.4435735341
bisection # iterations = 50
The root by regula falsi:
x = +0.4435735341  f(x) = -0.0000000000
regula falsi # iterations = 8
The root by the secant method:
x = +0.4435735341  f(x) = +0.0000000000
secant method # iterations = 9
The root by Newton's Method:
x = +0.4435735341  f(x) = -0.0000000000
Newton's Method # iterations = 6

D:\roots\x64\Release\roots.exe (process 28152) exited with code 0 (0x0).
Press any key to close this window . . .
#include <math.h>
#include <stdio.h>

typedef double real;

static real f(real x)
{
	double pi2 = 2.0 * atan(1.0);
	return(exp(-x) - sin(pi2 * x));
}

static real g(real x)
{
	double pi2 = 2.0 * atan(1.0);
	return(-exp(-x) - pi2 * cos(pi2 * x));
}

static int bisection(
	real(*f)(real), real* a, real* b, real xtol, int* flag)
{
	real error, fa, fm, xm;
	int n = 0;

	fa = (*f)(*a);
	if (fa * (*f)(*b) > 0.0)
	{
		*flag = -1;
		return(n);
	}
	error = fabsl(*b - *a);
	while (error > xtol)
	{
		n++;
		error *= 0.5;
		if (error <= xtol)
		{
			*flag = 0;
			return(n);
		}
		xm = 0.5 * (*a + *b);
		if (xm + error == xm)
		{
			*flag = 1;
			return(n);
		}
		fm = (*f)(xm);
		if (fa * fm > 0.0)
		{
			*a = xm;
			fa = fm;
		}
		else
			*b = xm;
	}
	*flag = 2;
	return(n);
}

static int regula(
	real (*f)(real), real a, real b, real xtol,
	real ftol, int ntol, real* w, int* flag)
{
	int n = 0;
	real fa, fb, fw, signfa, prvsfw;

	fa = f(a);
	if (fa >= 0.0) signfa = +1.0; else signfa = -1.0;
	fb = f(b);
	if (signfa * fb >= 0.0)
	{
		*flag = -1;
		return n;
	}
	*w = a;
	fw = fa;
	for (n = 0; n <= ntol; n++)
	{
		if (fabs(a - b) <= xtol)
		{
			*flag = 0;
			return n;
		}
		if (fabs(fw) <= ftol)
		{
			*flag = 1;
			return n;
		}
		*w = (fa * b - fb * a) / (fa - fb);
		if (fw >= 0.0) prvsfw = +1.0; else prvsfw = -1.0;
		fw = f(*w);
		if (signfa * fw > 0.0)
		{
			a = *w;
			fa = fw;
			if (fw * prvsfw > 0.0) fb = 0.5 * fb;
		}
		else
		{
			b = *w;
			fb = fw;
			if (fw * prvsfw > 0.0) fa = 0.5 * fa;
		}
	}
	*flag = 2;
	return n;
}

static int secantMethod(
	real(*f)(real), real xtol, real ftol,
	int ntol, real xm1, real x0, real* w)
{
	real fm1 = f(xm1), f0 = f(x0);
	real df = fabs(fm1 - f0), f1 = 0.0;
	real dx = fabs(xm1 - x0), x1 = 0.0;
	int n = 0;

	while (n < ntol && df > ftol && dx > xtol)
	{
		x1 = (f0 * xm1 - fm1 * x0) / (f0 - fm1);
		f1 = f(x1);
		df = fabs(f(x1) - f0);
		dx = fabs(x1 - x0);
		fm1 = f0;
		f0 = f1;
		xm1 = x0;
		x0 = x1;
		n++;
	}

	*w = x1;
	return n;
}

static int NewtonsMethod(
	real(*f)(real), real(*g)(real),
	real xtol, real ftol, int ntol,
	real* w)
{
	// f is the function
	// g is the function's derivative
	// xtol is root's tolerance
	// ftol is the function's tolerance
	// ntol is the maximum # of iterations
	real f1 = 0.0, g1 = 0.0, x0 = *w, x1 = 0.0;
	real f0 = f(x0), g0 = g(x0);
	real deltaX = DBL_MAX, deltaF = DBL_MAX;
	int n = 0;

	while (n < ntol && deltaX > xtol && deltaF > ftol)
	{
		x1 = x0 - f0 / g0;
		f1 = f(x1);
		g1 = g(x1);
		deltaX = fabs(x1 - x0);
		deltaF = fabs(f1 - f0);
		f0 = f1;
		g0 = g1;
		x0 = x1;
		n++;
	}

	*w = x1;
	return n;
}

int main(void)
{
	int flag = 0, ntol = 0;
	real a0 = 0, b0 = 0, ftol = 0, w1 = 0, w2 = 1.0;
	real a1 = 0, b1 = 0, w3 = 0, xtol = 0;

	a0 = 0.0;
	b0 = 1.0;
	ntol = 128;
	ftol = 1.0e-15;
	xtol = 1.0e-15;
	int its1 = bisection(f, &a0, &b0, xtol, &flag);
	a1 = 0.0;
	b1 = 1.0;
	int its2 = regula(f, a1, b1, xtol, ftol, ntol, &w1, &flag);
	int its3 = secantMethod(f, ftol, xtol, ntol, 0.0, 1.0, &w2);
	int its4 = NewtonsMethod(f, g, xtol, ftol, ntol, &w3);
	printf("function exp(-x) - sin(0.5 * pi * x)\n");
	printf("The interval found by bisection is:\n");
	printf("a = %+13.10lf  b = %+13.10lf\n", a0, b0);
	printf("bisection # iterations = %ld\n", its1);
	printf("The root by regula falsi:\n");
	printf("x = %+13.10lf  f(x) = %+13.10lf\n", w1, f(w1));
	printf("regula falsi # iterations = %ld\n", its2);
	printf("The root by the secant method:\n");
	printf("x = %+13.10lf  f(x) = %+13.10lf\n", w2, f(w2));
	printf("secant method # iterations = %ld\n", its3);
	printf("The root by Newton's Method:\n");
	printf("x = %+13.10lf  f(x) = %+13.10lf\n", w2, f(w3));
	printf("Newton's Method # iterations = %ld\n", its4);
	return(0);
}

Blog Entry © Tuesday, July 29, 2025, Double and Triple Monte Carlo Integration by James Pate Williams, Jr.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static double randomRange(double lo, double hi)
{
	return (hi - lo) * (double)rand() / RAND_MAX + lo;
}

static double integrand(double r, double w)
{
	return pow(r, 4.0) * (2.0 - r) * w * w * exp(-r);
}

static double StarkEffectIntegral(double E, int N)
{
	double sum = 0.0;

	for (int i = 0; i <= N; i++)
	{
		double r = randomRange(0.0, 100.0);
		double w = randomRange(-1.0, 1.0);

		sum += integrand(r, w);
	}

	return 100.0 * 2.0 * E * sum / (16.0 * (N - 1));
}

static void firstOrderStarkEffect(double E)
{
	double exact = -3.0 * E;
	int N[9] = {
		1000000, 2000000, 3000000, 4000000,
		5000000, 6000000, 7000000, 8000000,
		9000000 };

	for (int n = 0; n < 9; n++)
	{
		int iN = N[n];
		double integ = StarkEffectIntegral(E, iN);
		double error = 100.0 * fabs(integ - exact) / fabs(exact);

		printf("N = %4ld\tintegral = %13.10lf\t%% error = %13.10lf\n",
			iN, integ, error);
	}

	printf("exact value = %13.10lf\n", exact);
}

static double ee1(int N, double R, double Z)
{
	double pi = 4.0 * atan(1.0);
	double sum = 0.0;

	for (int i = 0; i <= N; i++)
	{
		double r1 = randomRange(1.0e-25, R);
		double r2 = randomRange(0.0, r1);

		sum += R * r1 * r1 * exp(-2.0 * Z * (r1 + r2)) * r2 * r2;
	}

	return 16.0 * pi * pi * sum / (N - 1);
}

static double ee2(int N, double R, double Z)
{
	double pi = 4.0 * atan(1.0);
	double sum = 0.0;

	for (int i = 0; i <= N; i++)
	{
		double r1 = randomRange(1.0e-25, R);
		double r2 = randomRange(r1, R);
		
		sum += R * (R - r2) * r2 * exp(-2.0 * Z * (r1 + r2)) * r1 * r1;
	}

	return 16.0 * pi * pi * sum / (N - 1);
}

static void firstOrderHelium(double Z)
{
	double pi = 4.0 * atan(1.0), R = 25.0;
	double exact = 5.0 * pi * pi / (8.0 * pow(Z, 5.0));

	int N[9] = {
		1000000, 2000000, 3000000, 4000000,
		5000000, 6000000, 7000000, 8000000,
		9000000 };

	for (int n = 0; n < 9; n++)
	{
		int iN = N[n];
		double integ = ee1(iN, R, Z) + ee2(iN, R, Z);
		double error = 100.0 * fabs(integ - exact) / fabs(exact);

		printf("N = %4ld\tintegral = %13.10lf\t%% error = %13.10lf\n",
			iN, integ, error);
	}

	printf("exact value = %13.10lf\n", exact);
}

int main(void)
{
	firstOrderStarkEffect(2.0);
	firstOrderHelium(2.0);
	return 0;
}
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static double randomRange(double lo, double hi)
{
	return (hi - lo) * (double)rand() / RAND_MAX + lo;
}

static double f(double x, double y, double z)
{
	return pow(sin(x), 2.0) + y * sin(z);
}

static double g(double x, double y, double z)
{
	return x + y * z * z;
}

static double integral(
	double x0, double x1,
	double y0, double y1,
	double z0, double z1,
	double (*f)(double, double, double),
	int N)
{
	double sum = 0.0;

	for (int n = 0; n <= N; n++)
	{
		double x = randomRange(x0, x1);
		double y = randomRange(y0, y1);
		double z = randomRange(z0, z1);

		sum += f(x, y, z);
	}

	return (x1 - x0) * (y1 - y0) * (z1 - z0) *
		sum / (N - 1);
}

int main(void)
{
	double pi = 4.0 * atan(1.0);
	double x0 = 0.0, x1 = pi;
	double y0 = 0.0, y1 = 1.0;
	double z0 = 0.0, z1 = pi;
	double exact = 0.5 * pi * (2.0 + pi);
	int N[9] = {
		1000000, 2000000, 3000000, 4000000,
		5000000, 6000000, 7000000, 8000000,
		9000000 };

	printf("integrand pow(sin(x), 2.0) + y * sin(z)\n");
	printf("x = 0 to pi, y = 0 to 1, z = 0 to pi\n");

	for (int n = 0; n < 9; n++)
	{
		int iN = N[n];
		double integ = integral(
			x0, x1, y0, y1, z0, z1, f, iN);
		double error = 100.0 * fabs(integ - exact) / fabs(exact);

		printf("N = %4ld\tintegral = %13.10lf\t%% error = %13.10lf\n",
			iN, integ, error);
	}

	printf("exact value = %13.10lf\n", exact);

	x0 = -1.0;
	x1 = 5.0;
	y0 = 2.0;
	y1 = 4.0;
	z0 = 0.0;
	z1 = 1.0;
	exact = 36.0;

	printf("integrand x + y * z * z\n");
	printf("x = -1 to 5, y = 2 to 4, z = 0 to 1\n");

	for (int n = 0; n < 9; n++)
	{
		int iN = N[n];
		double integ = integral(
			x0, x1, y0, y1, z0, z1, g, iN);
		double error = 100.0 * fabs(integ - exact) / fabs(exact);

		printf("N = %4ld\tintegral = %13.10lf\t%% error = %13.10lf\n",
			iN, integ, error);
	}

	printf("exact value = %13.10lf\n", exact);
	return 0.0;
}

Blog Entry © Sunday, July 27, 2025, A Bit of Programming Nostalgia Prime Number Related Programs by James Williams, Jr.

/*
  Author:  Pate Williams c 1995

  The following program is a solution to problem 18.15
  in Pascalgorithms by Edwin D. Reilly and Francis D.
  Federighi page 627. The program uses Simpson's rule
  to calculate the number of primes less than or equal
  a given number.
*/

#include <math.h>
#include <stdio.h>

typedef double real;

static real f(real x)
{
	return(1.0 / log(x));
}

static real simpson(int n, real a, real b)
{
	int i;
	real evensum, h, oddsum, twoh, x;

	if (n % 2 == 1) n = n - 1;
	h = (b - a) / n;
	twoh = h + h;
	x = h + a;
	oddsum = 0.0;
	for (i = 1; i <= n / 2; i++)
	{
		oddsum += f(x);
		x = twoh + x;
	}
	x = twoh + a;
	evensum = 0.0;
	for (i = 1; i <= n / 2 - 1; i++)
	{
		evensum += f(x);
		x = twoh + x;
	}
	return(h / 3.0 * (f(a) + f(b) + 4.0 * oddsum + 2.0 * evensum));
}

int main(void)
{
	int i, n, Nmaximum = 0, Nminimum = 0, Nstep;

	printf("n = ");			scanf_s("%d", &n);
	printf("N minimum = "); scanf_s("%d", &Nminimum);
	printf("N maximum = "); scanf_s("%d", &Nmaximum);
	printf("N step = ");	scanf_s("%d", &Nstep);
	printf("\n");
	printf("----------------------------------------\n");
	printf("Min\t\tMax\t\tprimes\n");
	printf("----------------------------------------\n");
	for (i = Nminimum; i <= Nmaximum; i += Nstep)
	{
		printf("%8d\t%8d\t%8.0lf\n", Nminimum, i + Nstep,
			simpson(n, Nminimum, i + Nstep));
	}
	printf("----------------------------------------\n");
	return(0);
}
n = 1024
N minimum = 0
N maximum = 10000000
N step = 1000000

----------------------------------------
Min             Max             primes
----------------------------------------
       0         1000000           78551
       0         2000000          148923
       0         3000000          216788
       0         4000000          283122
       0         5000000          348361
       0         6000000          412754
       0         7000000          476461
       0         8000000          539590
       0         9000000          602224
       0        10000000          664424
       0        11000000          726239
----------------------------------------

D:\PrimeCounter\x64\Release\PrimeCounter.exe (process 51884) exited with code 0 (0x0).
Press any key to close this window . . .
/*
  Author:  Pate Williams c 1995

  The following is a translation of the Pascal program
  sieve found in Pascalgorithms by Edwin D. Reilly and
  Francis D. Federighi page 652. This program uses sets
  to represent the sieve (see C Programming Language An
  Applied Perspective by Lawrence Miller and Alec Qui-
  lici pages 160 - 162).
*/

#include <math.h>
#include <stdio.h>

#define _WORD_SIZE 32
#define _VECT_SIZE 524288
#define SET_MIN    0
#define SET_MAX    16777215

typedef unsigned long SET[_VECT_SIZE];
typedef long ELEMENT;
typedef unsigned long LONG;

SET set;

static int get_bit_pos(int* long_ptr, int* bit_ptr,
	ELEMENT element)
{
	*long_ptr = element / _WORD_SIZE;
	*bit_ptr = element % _WORD_SIZE;
	return(element >= SET_MIN && element <= SET_MAX);
}

static void set_bit(ELEMENT element, int inset)
{
	int bit, word;

	if (get_bit_pos(&word, &bit, element))
	{
		if (inset > 0)
			set[word] |= (01 << bit);
		else
			set[word] &= ~(01 << bit);
	}
}

static int get_bit(ELEMENT element)
{
	int bit, word;

	return(get_bit_pos(&word, &bit, element) ?
		(set[word] >> bit) & 01 : 0);
}

static void set_Add(ELEMENT element)
{
	set_bit(element, 1);
}

static void set_Del(ELEMENT element)
{
	set_bit(element, 0);
}

static int set_Mem(ELEMENT element)
{
	return get_bit(element);
}

static void primes(long n)
{
	long c, i, inc, k;
	double x;

	set_Add(2);
	for (i = 3; i <= n; i++)
		if ((i + 1) % 2 == 0)
			set_Add(i);
		else
			set_Del(i);
	c = 3;
	do
	{
		i = c * c;
		inc = c + c;
		while (i <= n)
		{
			set_Del(i);
			i = i + inc;
		}
		c += 2;
		while (set_Mem(c) == 0) c += 1;
	} while (c * c <= n);
	k = 0;
	for (i = 2; i <= n; i++)
		if (set_Mem(i) == 1) k++;
	x = n / log(n) - 5.0;
	x = x + exp(1.0 + 0.15 * log(n) * sqrt(log(n)));
	printf("%8ld\t%8ld\t%8.0lf\n", n, k, x);
}

int main(void)
{
	long n = 100L;

	printf("----------------------------------------\n");
	printf("n\t\tprimes\t\ttheory\n");
	printf("----------------------------------------\n");
	do
	{
		primes((int)n);
		n = 10L * n;
	} while (n < (long)SET_MAX);
	printf("----------------------------------------\n");
	return(0);
}
----------------------------------------
n               primes          theory
----------------------------------------
     100              25              29
    1000             168             181
   10000            1229            1261
  100000            9592            9634
 1000000           78498           78396
10000000          664579          665060
----------------------------------------

D:\Sieve\x64\Release\Sieve.exe (process 60092) exited with code 0 (0x0).
Press any key to close this window . . .