Blog Entry © Friday, January 24, 2025, by James Pate Williams, Jr. Graphs and Tables of the Fresnel Cosine and Sine Integrals

Blog Entry © Thursday, January 23, 2025, by James Pate Williams, Jr. Fresnel Integral Tables and Source Code

Fresnel Cosine Integral

x C(x) Lau C(x) NBS % Difference
-0.620000 -0.5977736837 -0.5970137789 0.1272033494
-0.570400 -0.5556807496 -0.5553215257 0.0646666400
-0.520800 -0.5114255691 -0.5112670118 0.0310078114
-0.471200 -0.4655007132 -0.4654362526 0.0138485424
-0.421600 -0.4183252709 -0.4183015697 0.0056659009
-0.372000 -0.3702461017 -0.3702384156 0.0020759626
-0.322400 -0.3215416213 -0.3215395006 0.0006595409
-0.272800 -0.2724274481 -0.2724269764 0.0001731156
-0.223200 -0.2230633569 -0.2230632794 0.0000347412
-0.173600 -0.1735611006 -0.1735610925 0.0000046509
-0.124000 -0.1239927667 -0.1239927663 0.0000003151
-0.074400 -0.0743994375 -0.0743994375 0.0000000053
-0.024800 -0.0247999977 -0.0247999977 0.0000000000
0.024800 0.0247999977 0.0247999977 0.0000000000
0.074400 0.0743994375 0.0743994375 0.0000000053
0.124000 0.1239927667 0.1239927663 0.0000003151
0.173600 0.1735611006 0.1735610925 0.0000046509
0.223200 0.2230633569 0.2230632794 0.0000347412
0.272800 0.2724274481 0.2724269764 0.0001731156
0.322400 0.3215416213 0.3215395006 0.0006595409
0.372000 0.3702461017 0.3702384156 0.0020759626
0.421600 0.4183252709 0.4183015697 0.0056659009
0.471200 0.4655007132 0.4654362526 0.0138485424
0.520800 0.5114255691 0.5112670118 0.0310078114
0.570400 0.5556807496 0.5553215257 0.0646666400
0.620000 0.5977736837 0.5970137789 0.1272033494

Fresnel Sine Integral

x S(x) Lau S(x) Integral % Difference
-0.6200000000 -0.1215759428 -0.1215759428 0.0000000000
-0.5704000000 -0.0953732384 -0.0953732384 0.0000000000
-0.5208000000 -0.0730090407 -0.0730090407 0.0000000000
-0.4712000000 -0.0543049498 -0.0543049498 0.0000000000
-0.4216000000 -0.0390194784 -0.0390194784 0.0000000000
-0.3720000000 -0.0268634258 -0.0268634258 0.0000000000
-0.3224000000 -0.0175128445 -0.0175128445 0.0000000000
-0.2728000000 -0.0106195909 -0.0106195909 0.0000000000
-0.2232000000 -0.0058195744 -0.0058195744 0.0000000000
-0.1736000000 -0.0027389132 -0.0027389132 0.0000000000
-0.1240000000 -0.0009982644 -0.0009982644 0.0000000000
-0.0744000000 -0.0002156329 -0.0002156329 0.0000000000
-0.0248000000 -0.0000079864 -0.0000079864 0.0000000000
0.0248000000 0.0000079864 0.0000079864 0.0000000000
0.0744000000 0.0002156329 0.0002156329 0.0000000000
0.1240000000 0.0009982644 0.0009982644 0.0000000000
0.1736000000 0.0027389132 0.0027389132 0.0000000000
0.2232000000 0.0058195744 0.0058195744 0.0000000000
0.2728000000 0.0106195909 0.0106195909 0.0000000000
0.3224000000 0.0175128445 0.0175128445 0.0000000000
0.3720000000 0.0268634258 0.0268634258 0.0000000000
0.4216000000 0.0390194784 0.0390194784 0.0000000000
0.4712000000 0.0543049498 0.0543049498 0.0000000000
0.5208000000 0.0730090407 0.0730090407 0.0000000000
0.5704000000 0.0953732384 0.0953732384 0.0000000000
0.6200000000 0.1215759428 0.1215759428 0.0000000000

// FresnelFunctions.cpp : Defines the entry point for the application.
// (c) Thursday, January 23, 2025, by James Pate Williams, Jr.
// Tables of Fresnel Integrals C(x) and S(x)
// References: "A Numerical Library in C for Scientists and Engineers"
// (c) 1995 by H. T. Lau also the National Bureau of Standards and
// https://nvlpubs.nist.gov/nistpubs/jres/102/3/j23mie.pdf
// https://digital.library.unt.edu/ark:/67531/metadc40301/m2/1/high_res_d/applmathser55_w.pdf

#include "framework.h"
#include "FresnelFunctions.h"
#include <chrono>
#include <cwchar>
#include <vector>

#define MAX_LOADSTRING 100

// resource definitions

#define IDC_EDIT1 201
#define IDC_EDIT2 202
#define IDC_EDIT3 203
#define IDC_EDIT4 204
#define IDC_EDIT5 205

#define IDC_STATIC1 301
#define IDC_STATIC2 302
#define IDC_STATIC3 303
#define IDC_STATIC4 304

#define IDC_BUTTON_COMPUTE 401
#define IDC_BUTTON_CLEAR 402

// Global Variables:

HINSTANCE hInst;                                // current instance
WCHAR szTitle[MAX_LOADSTRING];                  // The title bar text
WCHAR szWindowClass[MAX_LOADSTRING];            // the main window class name
WCHAR buffer[16834], line[128];

// Forward declarations of functions included in this code module:

ATOM                MyRegisterClass(HINSTANCE hInstance);
BOOL                InitInstance(HINSTANCE, int);
LRESULT CALLBACK    WndProc(HWND, UINT, WPARAM, LPARAM);
INT_PTR CALLBACK    About(HWND, UINT, WPARAM, LPARAM);

int APIENTRY wWinMain(_In_ HINSTANCE hInstance,
                     _In_opt_ HINSTANCE hPrevInstance,
                     _In_ LPWSTR    lpCmdLine,
                     _In_ int       nCmdShow)
{
    UNREFERENCED_PARAMETER(hPrevInstance);
    UNREFERENCED_PARAMETER(lpCmdLine);

    // TODO: Place code here.

    // Initialize global strings

    LoadStringW(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING);
    LoadStringW(hInstance, IDC_FRESNELFUNCTIONS, szWindowClass, MAX_LOADSTRING);
    MyRegisterClass(hInstance);

    // Perform application initialization:

    if (!InitInstance (hInstance, nCmdShow))
    {
        return FALSE;
    }

    HACCEL hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDC_FRESNELFUNCTIONS));

    MSG msg;

    // Main message loop:

    while (GetMessage(&msg, nullptr, 0, 0))
    {
        if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
        {
            TranslateMessage(&msg);
            DispatchMessage(&msg);
        }
    }

    return (int) msg.wParam;
}
//
//  FUNCTION: MyRegisterClass()
//
//  PURPOSE: Registers the window class.
//
ATOM MyRegisterClass(HINSTANCE hInstance)
{
    WNDCLASSEXW wcex = { };

    wcex.cbSize = sizeof(WNDCLASSEX);

    wcex.style          = CS_HREDRAW | CS_VREDRAW;
    wcex.lpfnWndProc    = WndProc;
    wcex.cbClsExtra     = 0;
    wcex.cbWndExtra     = 0;
    wcex.hInstance      = hInstance;
    wcex.hIcon          = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_FRESNELFUNCTIONS));
    wcex.hCursor        = LoadCursor(nullptr, IDC_ARROW);
    wcex.hbrBackground  = (HBRUSH)(COLOR_WINDOW+1);
    wcex.lpszMenuName   = MAKEINTRESOURCEW(IDC_FRESNELFUNCTIONS);
    wcex.lpszClassName  = szWindowClass;
    wcex.hIconSm        = LoadIcon(wcex.hInstance, MAKEINTRESOURCE(IDI_SMALL));

    return RegisterClassExW(&wcex);
}
//
//   FUNCTION: InitInstance(HINSTANCE, int)
//
//   PURPOSE: Saves instance handle and creates main window
//
//   COMMENTS:
//
//        In this function, we save the instance handle in a global variable and
//        create and display the main program window.
//
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{
   hInst = hInstance; // Store instance handle in our global variable

   HWND hWnd = CreateWindowW(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,
      CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, nullptr, nullptr, hInstance, nullptr);

   if (!hWnd)
   {
      return FALSE;
   }

   ShowWindow(hWnd, nCmdShow);
   UpdateWindow(hWnd);

   return TRUE;
}

void fg_lau(double, double*, double*);

void fresnel_lau(double x, double* c, double* s)
{
	double absx, x3, x4, a, p, q, f, g, c1, s1;

	absx = fabs(x);
	if (absx <= 1.2) {
		a = x * x;
		x3 = a * x;
		x4 = a * a;
		p = (((5.47711385682687e-6 * x4 - 5.28079651372623e-4) * x4 +
			1.76193952543491e-2) * x4 - 1.99460898826184e-1) * x4 + 1.0;
		q = (((1.18938901422876e-7 * x4 + 1.55237885276994e-5) * x4 +
			1.09957215025642e-3) * x4 + 4.72792112010453e-2) * x4 + 1.0;
		*c = x * p / q;
		p = (((6.71748466625141e-7 * x4 - 8.45557284352777e-5) * x4 +
			3.87782123463683e-3) * x4 - 7.07489915144523e-2) * x4 +
			5.23598775598299e-1;
		q = (((5.95281227678410e-8 * x4 + 9.62690875939034e-6) * x4 +
			8.17091942152134e-4) * x4 + 4.11223151142384e-2) * x4 + 1.0;
		*s = x3 * p / q;
	}
	else if (absx <= 1.6) {
		a = x * x;
		x3 = a * x;
		x4 = a * a;
		p = ((((-5.68293310121871e-8 * x4 + 1.02365435056106e-5) * x4 -
			6.71376034694922e-4) * x4 + 1.91870279431747e-2) * x4 -
			2.07073360335324e-1) * x4 + 1.00000000000111e0;
		q = ((((4.41701374065010e-10 * x4 + 8.77945377892369e-8) * x4 +
			1.01344630866749e-5) * x4 + 7.88905245052360e-4) * x4 +
			3.96667496952323e-2) * x4 + 1.0;
		*c = x * p / q;
		p = ((((-5.76765815593089e-9 * x4 + 1.28531043742725e-6) * x4 -
			1.09540023911435e-4) * x4 + 4.30730526504367e-3) * x4 -
			7.37766914010191e-2) * x4 + 5.23598775598344e-1;
		q = ((((2.05539124458580e-10 * x4 + 5.03090581246612e-8) * x4 +
			6.87086265718620e-6) * x4 + 6.18224620195473e-4) * x4 +
			3.53398342767472e-2) * x4 + 1.0;
		*s = x3 * p / q;
	}
	else if (absx < 1.0e15) {
		fg_lau(x, &f, &g);
		a = x * x;
		a = (a - floor(a / 4.0) * 4.0) * 1.57079632679490;
		c1 = cos(a);
		s1 = sin(a);
		a = (x < 0.0) ? -0.5 : 0.5;
		*c = f * s1 - g * c1 + a;
		*s = -f * c1 - g * s1 + a;
	}
	else
		*c = *s = ((x > 0.0) ? 0.5 : -0.5);
}

void fg_lau(double x, double* f, double* g)
{
	double absx, c, s, c1, s1, a, xinv, x3inv, c4, p, q;

	absx = fabs(x);
	if (absx <= 1.6) {
		fresnel_lau(x, &c, &s);
		a = x * x * 1.57079632679490;
		c1 = cos(a);
		s1 = sin(a);
		a = (x < 0.0) ? -0.5 : 0.5;
		p = a - c;
		q = a - s;
		*f = q * c1 - p * s1;
		*g = p * c1 + q * s1;
	}
	else if (absx <= 1.9) {
		xinv = 1.0 / x;
		a = xinv * xinv;
		x3inv = a * xinv;
		c4 = a * a;
		p = (((1.35304235540388e1 * c4 + 6.98534261601021e1) * c4 +
			4.80340655577925e1) * c4 + 8.03588122803942e0) * c4 +
			3.18309268504906e-1;
		q = (((6.55630640083916e1 * c4 + 2.49561993805172e2) * c4 +
			1.57611005580123e2) * c4 + 2.55491618435795e1) * c4 + 1.0;
		*f = xinv * p / q;
		p = ((((2.05421432498501e1 * c4 + 1.96232037971663e2) * c4 +
			1.99182818678903e2) * c4 + 5.31122813480989e1) * c4 +
			4.44533827550512e0) * c4 + 1.01320618810275e-1;
		q = ((((1.01379483396003e3 * c4 + 3.48112147856545e3) * c4 +
			2.54473133181822e3) * c4 + 5.83590575716429e2) * c4 +
			4.53925019673689e1) * c4 + 1.0;
		*g = x3inv * p / q;
	}
	else if (absx <= 2.4) {
		xinv = 1.0 / x;
		a = xinv * xinv;
		x3inv = a * xinv;
		c4 = a * a;
		p = ((((7.17703249365140e2 * c4 + 3.09145161574430e3) * c4 +
			1.93007640786716e3) * c4 + 3.39837134926984e2) * c4 +
			1.95883941021969e1) * c4 + 3.18309881822017e-1;
		q = ((((3.36121699180551e3 * c4 + 1.09334248988809e4) * c4 +
			6.33747155851144e3) * c4 + 1.08535067500650e3) * c4 +
			6.18427138172887e1) * c4 + 1.0;
		*f = xinv * p / q;
		p = ((((3.13330163068756e2 * c4 + 1.59268006085354e3) * c4 +
			9.08311749529594e2) * c4 + 1.40959617911316e2) * c4 +
			7.11205001789783e0) * c4 + 1.01321161761805e-1;
		q = ((((1.15149832376261e4 * c4 + 2.41315567213370e4) * c4 +
			1.06729678030581e4) * c4 + 1.49051922797329e3) * c4 +
			7.17128596939302e1) * c4 + 1.0;
		*g = x3inv * p / q;
	}
	else {
		xinv = 1.0 / x;
		a = xinv * xinv;
		x3inv = a * xinv;
		c4 = a * a;
		p = ((((2.61294753225142e4 * c4 + 6.13547113614700e4) * c4 +
			1.34922028171857e4) * c4 + 8.16343401784375e2) * c4 +
			1.64797712841246e1) * c4 + 9.67546032967090e-2;
		q = ((((1.37012364817226e6 * c4 + 1.00105478900791e6) * c4 +
			1.65946462621853e5) * c4 + 9.01827596231524e3) * c4 +
			1.73871690673649e2) * c4 + 1.0;
		*f = (c4 * (-p) / q + 0.318309886183791) * xinv;
		p = (((((1.72590224654837e6 * c4 + 6.66907061668636e6) * c4 +
			1.77758950838030e6) * c4 + 1.35678867813756e5) * c4 +
			3.87754141746378e3) * c4 + 4.31710157823358e1) * c4 +
			1.53989733819769e-1;
		q = (((((1.40622441123580e8 * c4 + 9.38695862531635e7) * c4 +
			1.62095600500232e7) * c4 + 1.02878693056688e6) * c4 +
			2.69183180396243e4) * c4 + 2.86733194975899e2) * c4 + 1.0;
		*g = (c4 * (-p) / q + 0.101321183642338) * x3inv;
	}
}

double S(double z)
{
	int n = 768;
	double a = 0.0;
	double b = z;
	double h = (b - a) / n;
	double h2 = 2.0 * h;
	double s = 0.0;
	double t = 0.0;
	double x = a + h;
	double pi = 4.0 * atan(1.0);
	
	for (int i = 1; i < n; i += 2)
	{
		s += sin(pi * x * x / 2.0);
		x += h2;
	}

	x = a + h2;

	for (int i = 2; i < n; i += 2)
	{
		t += sin(pi * x * x / 2.0);
		x += h2;
	}

	double endA = 0.0;
	double endB = sin(pi * z * z / 2.0);
	return h * (endA + 4 * s + 2 * t + endB) / 3.0;
}

void fresnel_nbs(double x, double* c, double* s)
{
	double pi = 4.0 * atan(1.0);

	*c = x - pi * pi * pow(x, 5.0) / 40.0 -
		pi * pi * pi * pi * pow(x, 9.0) / 3456.0;
	// the following computation is in error
	*s = -pi / 6.0 + pi * pi * pi * pow(x, 7.0) / 336.0 -
		pow(pi, 5.0) * pow(x, 11.0) / 42240.0;
	// resort to Simpson's Rule with n = 16384
	*s = S(x);
} 

//
//  FUNCTION: WndProc(HWND, UINT, WPARAM, LPARAM)
//
//  PURPOSE: Processes messages for the main window.
//
//  WM_COMMAND  - process the application menu
//  WM_PAINT    - Paint the main window
//  WM_DESTROY  - post a quit message and return
//
//
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
	double lt = 0.0, rt = 0.0;
	int cors = 1, nPts = 0;
	WCHAR* endPt;
	static HWND hwndEdit1 = 0, hwndEdit2 = 0;
	static HWND hwndEdit3 = 0, hwndEdit4 = 0, hwndEdit5 = 0;

	switch (message)
	{
	case WM_CREATE:
	{
		CreateWindowEx(0, L"STATIC", L"Lt Point:", WS_CHILD | WS_VISIBLE,
			10, 10, 80, 20, hWnd, (HMENU)IDC_STATIC1, GetModuleHandle(NULL), NULL);
		CreateWindowEx(0, L"STATIC", L"Rt Point:", WS_CHILD | WS_VISIBLE,
			10, 40, 80, 20, hWnd, (HMENU)IDC_STATIC2, GetModuleHandle(NULL), NULL);
		CreateWindowEx(0, L"STATIC", L"n Points:", WS_CHILD | WS_VISIBLE,
			10, 70, 80, 20, hWnd, (HMENU)IDC_STATIC3, GetModuleHandle(NULL), NULL);
		CreateWindowEx(0, L"STATIC", L"C 1, S, 2:", WS_CHILD | WS_VISIBLE,
			10, 100, 80, 20, hWnd, (HMENU)IDC_STATIC4, GetModuleHandle(NULL), NULL);

		hwndEdit1 = CreateWindowEx(0, L"EDIT", NULL, WS_CHILD | WS_VISIBLE | WS_BORDER,
			100, 10, 200, 20, hWnd, (HMENU)IDC_EDIT1, GetModuleHandle(NULL), NULL);
		hwndEdit2 = CreateWindowEx(0, L"EDIT", NULL, WS_CHILD | WS_VISIBLE | WS_BORDER,
			100, 40, 200, 20, hWnd, (HMENU)IDC_EDIT2, GetModuleHandle(NULL), NULL);
		hwndEdit3 = CreateWindowEx(0, L"EDIT", NULL, WS_CHILD | WS_VISIBLE | WS_BORDER,
			100, 70, 200, 20, hWnd, (HMENU)IDC_EDIT3, GetModuleHandle(NULL), NULL);
		hwndEdit4 = CreateWindowEx(0, L"EDIT", NULL, WS_CHILD | WS_VISIBLE | WS_BORDER,
			100, 100, 200, 20, hWnd, (HMENU)IDC_EDIT4, GetModuleHandle(NULL), NULL);
		hwndEdit5 = CreateWindowEx(0, L"EDIT", NULL, WS_CHILD | WS_VISIBLE | WS_BORDER
			| ES_MULTILINE, 100, 170, 400, 400, hWnd, (HMENU)IDC_EDIT5,
			GetModuleHandle(NULL), NULL);

		CreateWindowEx(0, L"BUTTON", L"Compute", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
			10, 130, 80, 30, hWnd, (HMENU)IDC_BUTTON_COMPUTE, GetModuleHandle(NULL), NULL);
		CreateWindowEx(0, L"BUTTON", L"Clear", WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
			220, 130, 80, 30, hWnd, (HMENU)IDC_BUTTON_CLEAR, GetModuleHandle(NULL), NULL);

		SetDlgItemText(hWnd, IDC_EDIT1, L"-0.62");
		SetDlgItemText(hWnd, IDC_EDIT2, L"+0.62");
		SetDlgItemText(hWnd, IDC_EDIT3, L"25");
		SetDlgItemText(hWnd, IDC_EDIT4, L"1");
	}
    case WM_COMMAND:
        {
            int wmId = LOWORD(wParam);

            // Parse the menu selections:
			
			switch (wmId)
			{
			case IDC_BUTTON_COMPUTE:
			{
				buffer[0] = { '/0' };
				GetWindowText(hwndEdit1, line, 127);
				lt = wcstod(line, &endPt);

				if (!(lt >= -0.62 && lt <= 0.50))
				{
					MessageBox(hWnd, L"Must be -0.62 <= lt <= 0.50", L"Warning",
						MB_OK | MB_ICONWARNING);
					return 0;
				}

				GetWindowText(hwndEdit2, line, 127);
				rt = wcstod(line, &endPt);

				if (!(rt >= 0.51 && rt <= 0.62))
				{
					MessageBox(hWnd, L"Must be 0.51 <= rt <= 0.62", L"Warning",
						MB_OK | MB_ICONWARNING);
					return 0;
				}

				nPts = GetDlgItemInt(hWnd, IDC_EDIT3, FALSE, FALSE);

				if (nPts < 1 || nPts > 25)
				{
					MessageBox(hWnd, L"n-points must be >= 1 & <= 25", L"Warning",
						MB_OK | MB_ICONWARNING);
					return 0;
				}

				cors = GetDlgItemInt(hWnd, IDC_EDIT4, FALSE, FALSE);

				if (!(cors == 1 || cors == 2))
				{
					MessageBox(hWnd, L"C(x) = 1 or S(x) = 2", L"Warning",
						MB_OK | MB_ICONWARNING);
					return 0;
				}

				if (cors == 1)
				{
					wsprintf(line, L"Fresnel Cosine Integral\r\n\r\n");
					wcscpy_s(buffer, 16383, line);
					wsprintf(line, L"x\t\tC(x) Lau\t\tC(x) NBS\t\t%% Difference\r\n");
					wcscat_s(buffer, 16383, line);
				}

				else if (cors == 2)
				{
					wsprintf(line, L"Fresnel Sine Integral\r\n\r\n");
					wcscpy_s(buffer, 16383, line);
					wsprintf(line, L"x\t\tS(x) Lau\t\tS(x) Integral\t%% Difference\r\n");
					wcscat_s(buffer, 16383, line);
				}

				double deltaX = (rt - lt) / nPts, x = lt;

				for (int i = 0; i <= nPts; i++)
				{
					double c1 = 0.0, c2 = 0.0, s1 = 0.0, s2 = 0.0;
					double percentDifference = 0.0;
					double cx = x, sx = x;

					fresnel_lau(cx, &c1, &s1);
					fresnel_nbs(sx, &c2, &s2);

					if (cors == 1)
					{
						percentDifference = fabs(c1 - c2) / fabs((c1 + c2) / 2.0);
						swprintf_s(
							line, L"%13.6lf\t%13.10lf\t%13.10lf\t%13.10lf\r\n",
							cx, c1, c2, 100.0 * percentDifference);
						wcscat_s(buffer, 16383, line);
					}

					else if (cors == 2)
					{
						percentDifference = fabs(s1 - s2) / fabs((s1 + s2) / 2.0);
						swprintf_s(
							line, L"%13.10lf\t%13.10lf\t%13.10lf\t%13.10lf\r\n",
							sx, s1, s2, 100.0 * percentDifference);
						wcscat_s(buffer, 16383, line);
					}

					x += deltaX;
				}

				SetDlgItemText(hWnd, IDC_EDIT5, buffer);
			}
			break;
			case IDC_BUTTON_CLEAR:
			{
				wcscpy_s(buffer, 16383, L"\0");
				SetDlgItemText(hWnd, IDC_EDIT5, buffer);
			}
			break;
            case IDM_ABOUT:
                DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hWnd, About);
                break;
            case IDM_EXIT:
                DestroyWindow(hWnd);
                break;
            default:
                return DefWindowProc(hWnd, message, wParam, lParam);
            }
        }
        break;
    case WM_PAINT:
        {
            PAINTSTRUCT ps;
            HDC hdc = BeginPaint(hWnd, &ps);
            // TODO: Add any drawing code that uses hdc here...
            EndPaint(hWnd, &ps);
        }
        break;
	case WM_SIZE:
		if (hwndEdit5)
		{
			RECT rcClient;
			GetClientRect(hWnd, &rcClient);
			SetWindowPos(hwndEdit5, NULL, 10, 170, rcClient.right - 20,
				rcClient.bottom - 20, SWP_NOZORDER);
		}
		break;
    case WM_DESTROY:
        PostQuitMessage(0);
        break;
    default:
        return DefWindowProc(hWnd, message, wParam, lParam);
    }
    return 0;
}

// Message handler for about box.
INT_PTR CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)
{
    UNREFERENCED_PARAMETER(lParam);
    switch (message)
    {
    case WM_INITDIALOG:
        return (INT_PTR)TRUE;

    case WM_COMMAND:
        if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)
        {
            EndDialog(hDlg, LOWORD(wParam));
            return (INT_PTR)TRUE;
        }
        break;
    }
    return (INT_PTR)FALSE;
}

Blog Entry © Thursday, January 23, 2025, by James Pate Williams, Jr. Three Classical Iterative and Two Direct Linear Equation Solvers

Blog Entry © Wednesday, January 22, 2025, by James Pate Williams, Jr. Three Classical Iterative Linear Equation Solvers

Blog Entry (c) Monday, January 2025, by James Pate Williams, Jr. nth Roots of a Real Number Using the Newton-Raphson Method Win32 C/C++ App

Blog Entry (c) Monday, January 20, 2025, by James Pate Williams, Jr. Solution of a Nonlinear Equation Using a Back-Propagation Neural Network

The equation solved is f(x, y, z, u) = x + y * y + z * z * z + u * u * u * u = o.

Blog Entry © Saturday, January 18, 2025, by James Pate Williams, Jr. Preliminary Virtual Vision Field (VVF) Diagnostic Optometry Test Simulator

I was administered a VVF Test on Wednesday, January 15, at Dr. Brent Brown and Associates Inc office in LaGrange, Georgia. The test consists of using a headset that has an orange circle in the center of the display. The examinee has a trigger device to click each time a white flash occurs. I decided to write a C/C++ Win32 application to simulate the VVF Test. The following two pictures are from a simulated test of one minute in duration. The white flashes are separated by 1000 millisecond (1 second) and their durations are also 1000 milliseconds (1 second).

Positions of the Hits

1 (571, 842)
2 (587, 196)
3 (594, 644)
4 (694, 273)
5 (717, 620)
6 (718, 297)
7 (724, 360)
8 (743, 186)
9 (774, 736)
10 (798, 326)
11 (835, 361)
12 (859, 357)
13 (927, 553)
14 (1040, 848)
15 (1100, 463)
16 (1177, 157)
17 (1195, 552)
18 (1225, 190)
19 (1234, 344)
20 (1253, 606)
21 (1285, 872)
22 (1290, 594)
23 (1297, 391)
24 (1303, 458)

Positions of the Misses

1 (627, 832)
2 (983, 266)
3 (1078, 827)
4 (1191, 788)
5 (1258, 349)
6 (1317, 585)

Blog Entry © Tuesday, January 14, 2025, by James Pate Williams, Jr. Solution of an 8×8 System of Nonlinear Equations Using a Hybrid Algorithm